An On-Sun Comparison of GaInP2/GaAs Tandem Cells with Top-Cell Thickness Varied

Presented at the 2004 DOE Solar Energy Technologies Program Review Meeting
October 25-28, 2004
Denver, Colorado
NOTICE

The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste
ABSTRACT

This study compares the on-sun performance of a set of GaInP$_2$/GaAs tandem cells with different GaInP$_2$ top-cell thicknesses. Because high-efficiency III-V cells are best suited to concentrating photovoltaic (CPV) applications, the cells were mounted on a two-axis tracker with the incident sunlight collimated to exclude all except the direct beam. Current-voltage (I-V) curves were taken throughout the course of several days, along with the direct solar spectrum. Our two major conclusions are: (1) GaInP$_2$/GaAs tandem cells designed for an "air mass 1.5 global" (AM 1.5G) or a "low aerosol optical depth" (Low AOD) spectrum perform the best, and (2) a simple device model using the measured direct spectra as an input gives the same result. These results are equally valid for GaInP$_2$/GaAs/Ge triple-junction cells.

1. Objectives

To maximize the performance of GaInP$_2$/GaAs tandem cells and GaInP$_2$/GaAs/Ge triple-junction cells, the top GaInP$_2$ cell must be "thinned" slightly to allow some above-band-gap photons to pass through to the GaAs bottom cell. Because the solar spectrum changes throughout each day, the optimal top-cell thickness (t_{top}) constantly changes. Nonetheless, when tandem cells are manufactured for use in a concentrator system, a single t_{top} must be specified. This study is intended to aid in t_{top} selection for CPV applications.

This study is an extension of a previous theoretical study [1], in which we simulated the performance of GaInP$_2$/GaAs tandem cells under "standard day conditions" as a function of t_{top}. Here, we will examine all of the same issues, but by actually monitoring the performance of real cells over a period of several days, outdoors under direct sunlight. We find good agreement between our theoretical and experimental results, validating the methods used in our theoretical model.

Measurements were made over the course of several days in Golden, Colorado. To a first approximation this represents the spectral variation of sunlight at a typical concentrator site in the southwestern United States.

2. Technical Approach

To give some background, the model results in Fig. 1 show how performance should vary with t_{top} under four standard reference spectra [2]. For each spectrum, there is an optimal t_{top}.

For this study, we grew a set of tandem cells (named 'A' - 'E') with five different top-cell thicknesses, with a t_{top} range spanning all foreseeable applications. Approximate t_{top} values for these cells are shown along the bottom axis. Cell A has the thinnest t_{top} and is well suited to "blue-rich" space applications. Cell E has the thickest t_{top} and is better for "red-rich" morning and evening light. The other three cells have intermediate t_{top} values which are compromises between midday power production and overall daily energy production. As a gauge of experimental error, two cells were grown with the median t_{top} (C1 and C2). Cell C should perform best under a Low-AOD spectrum [3] proposed for concentrator applications. A "clear sky" direct spectrum which is similar to the Low-AOD spectrum has also been proposed [4].

![Fig. 1. Calculated power produced by a GaInP/GaAs/Ge triple-junction cell as a function of t_{top} for Air Mass 0, 1.5 Global, 1.5 Direct, and Low Aerosol Optical Depth standard reference spectra. Relative t_{top} values are shown, normalized to the optimal AM0 t_{top}. Although the power produced by a GaInP/GaAs tandem cell will be less, the optimal t_{top} for any given spectrum will not change. Approximate t_{top} values for cells A - E are indicated.](image-url)
were made for each cell throughout the day. To relate cell performance to the incident spectrum, the direct solar spectrum was measured concurrently.

3. Results and Accomplishments

Figure 2 shows the power produced by each cell on a particularly clear (blue-rich) day. Cell B (designed for ~AM1.5G) was best for midday power production, whereas cell E performed best during the morning and evening. Cell A (designed for ~AM0) is out-performed by other cells throughout the day. Although not shown here, the measured midday power for cells B and C during slightly hazy, partly cloudy days was approximately the same.

The power produced by each cell over the course of the day shown in Fig. 2 was integrated to determine its daily energy (Table 1). If cells C1 and C2 are averaged, the daily energies for cells B and C are about the same. On a slightly hazy, less blue-rich day, cell C is favored. The performance of each cell was also modeled using the measured direct spectrum as an input, with similar results. A thorough comparison between measured and modeled results will be presented at the 31st IEEE PV Specialists Conference.

4. Conclusions

We have satisfied a FY2004 milestone by measuring and modeling the on-sun performance of GaInP/GaAs tandem cells under direct illumination for concentrator applications. This study gives direct support for the use of the Low AOD spectrum to design cells for maximum daily energy and midday power. A similar "Clear Sky" standard spectrum, and even the AM 1.5G spectrum will also work quite well. The AM 1.5D spectrum is a poor choice, unless maximizing morning and/or evening power production is a priority.

ACKNOWLEDGEMENTS

The authors would like to thank Bill Marion for providing the "standard day" spectra used in this study. This work was performed at the National Renewable Energy Laboratory under DOE contract DE-AC36-99GO10337.

REFERENCES

MAJOR FY 2004 PUBLICATIONS

This study compares the on-sun performance of a set of GaInP₂/GaAs tandem cells with different GaInP₂ top-cell thicknesses. Because high-efficiency III-V cells are best suited to concentrating photovoltaic (CPV) applications, the cells were mounted on a two-axis tracker with the incident sunlight collimated to exclude all except the direct beam. Current-voltage (I-V) curves were taken throughout the course of several days, along with the direct solar spectrum. Our two major conclusions are: (1) GaInP₂/GaAs tandem cells designed for an "air mass 1.5 global" (AM 1.5G) or a "low aerosol optical depth" (Low AOD) spectrum perform the best, and (2) a simple device model using the measured direct spectra as an input gives the same result. These results are equally valid for GaInP₂/GaAs/Ge triple-junction cells.