MODELING OF SYNGAS REACTIONS AND HYDROGEN GENERATION OVER SULFIDES

PDF Version Also Available for Download.

Description

The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. During this study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The relative stabilities of pure MoS{sub 2} edges were calculated and small clusters ... continued below

Physical Description

70 pages

Creation Information

Klier, Kamil; Spirko, Jeffery A. & Neiman, Michael L. October 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. During this study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The relative stabilities of pure MoS{sub 2} edges were calculated and small clusters exhibiting properties of the edges were modeled. The results were finalized and published in the journal ''Surface Science''. Hydrogen adsorption energies on both the edges and the clusters were calculated, and the thermodynamics of hydrogen adsorption on both systems were evaluated. The adsorption locations and vibrational frequencies were also determined. These additional results were published in a second paper in ''Surface Science''. Most recently, the bonding and effect of alkali and transition metal ions was investigated on the MoS{sub 2} clusters. Potassium atoms bind to the clusters and increase the binding of hydrogen to the clusters while reducing the activation barriers for hydrogen adsorption. Silver attaches to the Mo7S14 cluster and donates its odd electron to the nearby Mo atoms and should have a similar effect to hydrogen as potassium does.

Physical Description

70 pages

Notes

OSTI as DE00836407

Source

  • Other Information: PBD: 1 Oct 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG26-01NT41276
  • DOI: 10.2172/836407 | External Link
  • Office of Scientific & Technical Information Report Number: 836407
  • Archival Resource Key: ark:/67531/metadc782616

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 3, 2017, 12:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Klier, Kamil; Spirko, Jeffery A. & Neiman, Michael L. MODELING OF SYNGAS REACTIONS AND HYDROGEN GENERATION OVER SULFIDES, report, October 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc782616/: accessed April 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.