Structure/Function Studies of Proteins Using Linear Scaling Quantum Mechanical Methodologies

PDF Version Also Available for Download.

Description

We developed a linear-scaling semiempirical quantum mechanical (QM) program (DivCon). Using DivCon we can now routinely carry out calculations at the fully QM level on systems containing up to about 15 thousand atoms. We also implemented a Poisson-Boltzmann (PM) method into DivCon in order to compute solvation free energies and electrostatic properties of macromolecules in solution. This new suite of programs has allowed us to bring the power of quantum mechanics to bear on important biological problems associated with protein folding, drug design and enzyme catalysis. Hence, we have garnered insights into biological systems that have been heretofore impossible to ... continued below

Physical Description

vp.

Creation Information

Merz, K. M. July 19, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We developed a linear-scaling semiempirical quantum mechanical (QM) program (DivCon). Using DivCon we can now routinely carry out calculations at the fully QM level on systems containing up to about 15 thousand atoms. We also implemented a Poisson-Boltzmann (PM) method into DivCon in order to compute solvation free energies and electrostatic properties of macromolecules in solution. This new suite of programs has allowed us to bring the power of quantum mechanics to bear on important biological problems associated with protein folding, drug design and enzyme catalysis. Hence, we have garnered insights into biological systems that have been heretofore impossible to obtain using classical simulation techniques.

Physical Description

vp.

Notes

OSTI as DE00831066

Source

  • Other Information: PBD: 19 Jul 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FG02-96ER62270
  • DOI: 10.2172/831066 | External Link
  • Office of Scientific & Technical Information Report Number: 831066
  • Archival Resource Key: ark:/67531/metadc782490

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 19, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 4, 2016, 7:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Merz, K. M. Structure/Function Studies of Proteins Using Linear Scaling Quantum Mechanical Methodologies, report, July 19, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc782490/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.