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The goal of this project was to develop tools to facilitate data transformations between heterogeneous data 
sources found throughout biomedical applications. Such transformations are necessary when sharing data 
between different groups worlung on related problems as well as when querying data spread over different 
databases, files and software analysis packages. 

We summarize progress made during the term of this grant in the development of the Kleisli query system. 
Kleisli implements a high level query language called the Collection Programming anguage (CPL) and 
contains drivers to access many types of databases found throughout the genomic community, including: 
relational databases (Oracle and Sybase); ASN.l; BLAST and FASTA; Shore (and potentially other object- 
oriented databases); EcoCyc (a Lisp-based metabolic pathways system); SRS; Medline; MMDB; OPWCTL; 
US and IBM patent databases. The query system is based on a complex model of data, which provides a 
natural encoding of data in this domain, and uses a number of optimization strategies and sophisticated 
parallel execution strategies to improve the performace of queries. The system has been used for 
applications with the Center fdr Bioinformatics at the University of Pennsylvania, and within projects at 
SmithKline Beecham. It also forms the basis of the Tambis system developed at the University of 
Mancheste, UK. 

We then describe a re-implementation of Kleisli called K2. K2 is implemented in Java (Kleisli was 
implemented in the rapid prototyping language ML), and allows the overlay on an ontology to aid 
integration. The report closes with some preliminary observations on the use of XML for data integration. 
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1. Introduction 

The process of building a new database relevant to some field of study in biology involves extracting, 
transforming, integrating and cleansing data from multiple external data sources, as well as adding new 
material and annotations. For example, EpoDB [ l ]  is a database created at the University of Pennsylvania 
Center for Bioinformatics \ \ - \~~\~~.cb~l .ui~ei in .edu,  which was designed to study gene regulation during 
differentiation and development of vertebrate red blood cells. In building EpoDB, data relevant to red blood 
cells were extracted from Genbank, Swissprot, TRRD (transcriptional regulation data) and GERD 
(expression levels data) and transformed into a relational form. The data was then cleansed of errors using a 
semi-automated approach. Cleansed data was then integrated, and additional information or annotations 
were entered manually to the integrated data. 

Due to the cleansing and value added to the extracted data, databases such as EpoDB are commonly referred 
to as curated data warehouses, or in database jargon, as materialized views. In contrast, in an uninaterialized 
view, the data is not stored, but is extracted on demand. The specification of the view describes how to 
translate queries against the view into queries against the underlying distributed data sources. The CPL 
queries illustrated at htt~:~!'a~;avc.hun~~cn.upenn.cdu~cnlici~ll~ome.htinl are examples of a solution using 
unmaterialized views. 

The advantage of a materialized solution is that system performance will, in general, be much better than is 
possible in an on-demand environment. First of all, query optimization can be performed locally at the data 
warehouse (assuming the system used for warehousing is a good one); second, inter-data source 
communication time will be eliminated. System reliability should also be significantly higher since there are 
fewer dependencies on network connectivity and the individual data sources (again, assuming that the 
system in which the materialized solution is stored is reliable). It is also less costly to implement any inter- 
data source constraints that have been determined in the integration [2]. The disadvantages of a materialized 
solution include the initial cost of constructing the warehouse, and the cost of maintaining currency of the 
data. As updates are made in the underlying data sources, the materialized warehouse becomes out of date. 
Keeping the materialized view current involves translating the updates to the underlying data sources into 
updates on the warehouse, which may involve a complex query over the warehouse as well as source data if 
the integrated schema is complex. 

Despite these differences, both solutions share the need to extract, transform and integrate data from 
multiple external data sources, as illustrated in Figure 1. At the bottom of the figure are the data sources of 
interest, and at the top are applications which require access to an integrated view of the data (e.g. the 
queries of interest submitted to EpoDB). The middle area surrounded by dotted lines indicates that some 
form of data transformation and integration must be performed to enable top-level data access. EpoDB is an 
example of a data warehouse solution, in which the transformed and integrated data is physically stored in 
an Oracle database. 
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Figure 1: Data Warehousing (Materialized View) versus On-Demand Integration (Unmaterialized View) 

While solutions exist for data transformation and integration when the underlying data sources are all 
relational, they do not work in the context of biomedical data sources due to their variety and complexity. 
For example, the “database of molecular biology databases” ~~~~.infobio~en.frlservicesldbcat/  contains 
information about databases of general interest in molecular biology and genetics. Of the more than 400 
databases listed, less than 10 appear to use commercial database technology.’ Over 50% give an ftp site from 
which source data is available in some structured form, and most provide some sort of web interface. A 
cursory examination of the ftp sites shows that quite a number of these databases use some variation of the 
EMBL format; others use ASN. 1 or an ACeDB format. 

Although relational database technology is well developed, and provides a number of features not generally 
provided by systems based on data formats (such as security, support for multiple concurrent users, 
recoverability, a “complete” query language, and the ability to embed queries in general purpose 
programming languages such as C and Java), formats such as EMBL and ACeDB are appealing in the 
biomedical community for a number of reasons. First, biomedical data are complex and not easy to 
represent in a relational DBMS; typical structures include sequential data (lists) and deeply nested record 
structures. As an example, a natural translation of a Swissprot entry to a relational form results in the entry 
being split over about 15 tables. Second, formatted files are easily accessed from languages such as 
Fortran, C, Java and Perl, and a number of useful software programs exist that work with these files. Third, 
the files and associated retrieval packages are available for a variety of platforms and are much less costly 
than commercial systems. It is therefore unlikely that existing biomedical data sources will migrate to 
relational systems so that existing commercial tools can be used for transformation and integration. 

In this report, we briefly describe how the Kleisli system can be used for data transformation and integration 
within biomedical applications. Kleisli is based on a complex value model of data, and has a well-defined 
query language (the Collection’ Programming Language, CPL) for which powerful optimization techniques 
have been developed. The appeal of a complex value model of data is that it captures most biomedical data 
formats - EMBL, ASN. 1, ACeDB, etc. It is therefore easy to translate from biomedical data into this form, 
as it is for a variety of commercial data models (relational, object-oriented, etc). We then discuss the new 
generation of Kleisli, called K2. We close by observing how semi-structured data, most notably the data 
format XML, may be “on the horizon” for data exchange, transformation and integration. - 

2. Kleisli and CPL 

An example of a CPL type called “Genbank-entry” is given in Figure 2. This models a simplified Genbank 
entry, and uses the following notation: {z} denotes a set, {lzl} a bag, ( 1 1 ~ 1 1 )  a list, [l,: zl, .. ., 1,: T,] a record, 
and 4’: zl, ..., 1,: z,> a variant (tagged union). Note the use of a list of records within the References field, 
indicating that the order of references (and again of authors’ names within each reference) is important. 
Also note the use of a variant or “tagged union” type within the Features record field, indicating that a 
feature is either a Source or Gene type. Values in CPL are explicitly constructed as follows: [al= el, ..., 

The low percentage of biomedical databases that use commercial technology is actually not surprising. It is estimated 
that as much of 90% of the world’s data is not in a commercial database, but rather in data formats developed for the 
transmission andor archiving of data and “applications” such as on-line dictionaries and BLAST. 
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The “collection” types in CPL are set, bag (set with duplicates) and list (bag with order). 



a,,=e,] for records, giving values ei of the appropriate type for each of the attributes; <a = e> for variants, 
giving a value of the appropriate type for label a; and {e,, . . ., e,,} for sets. 

Genbank-entry = [ID: string, 
AccNumber: string, 
Description: string, 
SeqLength: int, 
Source: string, 
References: {I1 [Title: string, Authors: {I[ string [I} ]  I[}, 
Sequence: string, 
Features: {I1 < Source: [From: int, To: int, Complement: bool, Organism: string], 

Gene: [From: int, To: int, Complement: bool, Gene: string] > [I}] 

Queries in CPL are expressed using comprehensions. As an example, suppose we have a set of values of 
type Genbank-entry called gbs and wish to extract the ID and AccNumber of all sequences whose source is 
“Bacillus subtilis”. We would write this as the following comprehension: 

{ [ID=e.ID, AccNumber=e.AccNumber] I \e t gbs, e.Source=“Bacillus subtilis”} 

The variable e is successively bound (indicated by the backslash, “\e”) to each element of gbs (indicated by 
the generator “t”). For each e, if e.Source=“Bacillus subtilis” then the value [ ID=e.lD, AccNumber=e.AccNumber ] 
is constructed; all such values are then combined in a set to form the final result. 

Another important concept of CPL is pattern matching. Instead of binding an element of a collection to a 
variable name using the expression “\en, it is possible to specify complex variable bindings and conditions 
using patterns. For example, we could rewrite the query above using patterns as: 

{ [ID=i, AccNumbe~a] I [ID=\i, AccNumber= \a, Source=“Bacillus subtilis”, ...I t gbs} 

The use of the ellipsis “ ...” indicates that other fields are present in the record type of an element of gbs. 

A final example shows how the gene features of Genbank entries can be restru-ctured (flattened) into a 
relational format, so that each gene feature is stored separately with the ID of the entry in which it appears: 

{ [ID=i, From=s, To=e, Complement=c, Gene=g] I 
[ID = \i, Feature= \f, ...I t gbs, <Gene [From=\s, To=\e, Complement=\c, Gene=\g]> t r) 

Note that the result type is {[ID: string, From: int, TO: int, Complement: bool, Gene: string]}. In addition to using 
pattern matching to bind variables such as i to the value of a field, the pattern “Gene=” is used to extract only 
those features which are genes. 

CPL has been implemented in a data transformation and integration system called Kleisli. The system is 
based on (1) an extensible architecture for implementing the CPL query primitives; (2) optimization 
techniques that extend many known techniques from relational databases and derive new techniques for 
complex data types; and (3) a collection of generic drivers for external data sources. The extensible 
architecture allows new data types and operations to be easily added to the system. Optimizations allow 
time and resource consuming queries to be rewritten into equivalent “cheaper” queries, and determine good 
ways of executing particular operators. By “generic drivers” we mean that once a driver for a particular type c 



of source (e.g., the relational database system Ofacle) has been developed, it can be used for any database of 
that type (e.g., the Chr22DB database, which is implemented in Oracle). The function of a driver is to 
communicate queries to the underlying.data source and translate the results of queries into CPL format. 

As an illustration of how Kleisli can be used to integrate heterogeneous databases, suppose that we have a 
BLAST package and an SRS version of Swissprot. The type of a Swissprot entry is given in CPL as: 

Swissprot-entry = [ID: string, AccNumber: string, Description: string, GeneName: string, 
Organism: string, Comments: {string}, SeqLength: int, Sequence: string] 

Entry points into each of these data sources are modeled in Kleisli as functions. For example, the function 
BLAST takes as input the desired database against which to perform comparisons and a nucleotide sequence, 
and returns a set of hits in Genbank format (i.e. the hits will have type Genbank-entry). The function 
Swissprot-Gene-Org models access to Swissprot: It takes as input a gene name and source organism and 
returns a set of entries of type Swissprot-entry. We can then use these entry points in CPL queries to perform 
integration of the underlying data sources. 

Suppose we wish to integrate Genbank and Swissprot as follows: "Given a nucleotide sequence 
NUCLEOTIDE-SEQUENCE, find all similar Genbank entries using BLAST. For each gene feature that has a 
corresponding Swissprot entry, return the Genbank accession number, the gene feature fields, and the ID and 
comments (annotations) from the Swissprot entry." 

The CPL query (which we will name "Genbank-Swissprot") to perform this integration is as follows: 

{ [AccNumber gb.AccNumberl From = f, To = t, Complement = c, 
Gene gn, SwisslD SAD, SwissComments = s.Comments] I 

\gb t BLASTrgenbank", NUCLEOTIDE-SEQUENCE), 
<Gene = [From = \f, To = \t, Complement \c, Gene = \gn]> t gb.Features, 
\s t Swissprot-Gene-Org(gn, gb.Source) } 

Genbank-Swissprot produces as output a set of records with fields AccNumber, From, To, Complement, Gene, 
SwisslD and SwissComments. The input sequence NUCLEOTIDE-SEQUENCE is passed to BLAST with the 
specification to use Genbank. For each hit gb (which has type Genbank-entry), we extract all fields of 
features that are genes. The gene name and source fields are then used to access Swissprot to obtain the 
Swissprot ID and comments. - 

These examples illustrate only a small part of the expressive power of CPL. A more detailed description of 
the language is given in [3], and more extensive discussions of data integration using Kleisli can be found in 
[4,5,61. 

3. K2, ODMG, and K2MDL 

Another approach to the integration of information sources that was begun under funding for this grant is the 
K2 system [7 ] .  This system has interfaces based on the ODMG standard [8] and extensions thereof. In 
particular, integrated schemas are expressed in ODL (the data definition language) extended with variant 
types, while queries against these schemas are expressed in an extension of OQL (the query language) with 
variant operations. For example, the schema of an integrated view analogous to Genbank-Swissprot would be 
represented in ODL as follows: 

h 



class Genbank-Swissprot 
(extent Genbank-Swissprot-extent) 
{attribute string AccNurnber; 
attribute int From; 
attribute int To; 
attribute boo1 Complement; 
attribute string Gene; 
attribute string SwisslD; 
attribute set<string> SwissCornments;} 

Figure 3: ODL Schema for Genbank-Swissprot View 

K2 also uses ODL to represent the data sources to be integrated. It turns out that most biological data 
sources can be described as “dictionaries” returning complex values. For example: 

Swissprot-Gene-Org : dictionary<struct{string GeneNarne, string SourceOrganisrn}, set<Swissprot-entry>> 

A dictionary is a finite function. Each dictionary consists of a domain of keys (e.g., GeneNarne and 
SourceOrganisrn) and an association that maps each of the keys in the domain into a value (e.g. a set of 
Swissprot entries). To describe the integration, K2 uses a new language, K2MDL, which combines the 
syntax of ODL and OQL to specify data transformations from multiple sources to one target. The key to 
making ODL, OQL, and K2MDL work well together is the expressiveness of the internal framework of K2, 
which is based on complex values and dictionaries. ODL classes with extents are represented internally as 
dictionaries with abstract keys (the object identities). This framework opens the door to interesting 
optimizations that make this approach feasible. 

As with Kleisli, a tremendous enhancement in productivity is gained by being able to express complicated 
integrations in a few lines of K2MDL code as opposed to several orders of magnitude more lines of, for 
example, Per1 or C++ code. 

4. Semi-structured Data and XML 

As a universal data exchange format, XML [9] may well supplant existing formats such as ASN.l for 
biological data. Having a universal format for data exchange will surely simplify some of the lower-level 
driver technology that is part of the Kleisli and K2 systems. An open question is whether it will do more 
than this. Since this approach may well become popular in the next several years, we summarize some pros 
and cons of using XML as a basis for data integration. 

XML is an example of a semistructured data format [lo], which means that each data element component of 
the data) carries its own description. Unlike ASN.1, there is no separate schema to constrain the structure of 
the data. What this means in practice is that it will be possible to make ad-hoc changes to the structure of 
individual components (such as additional fields, missing elements etc.) and collections of these elements 
may be heterogeneous. ACeDB [l 11 is an interesting example of what might be taken as semistructured 
data. Although it has a schema, the schema imposes only weak constraints on the data (it can accommodate 
missing data, for example) and the type system used by ACeDB - that of an edge-labeled graph - is 
remarkably close to that adopted for semistructured data. 
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As an example, an XML version of an instance of a Genbank entry (whose type is given in Figure 2) is 
shown in Figure 3. Note that the type is carried in the labels. 

Because it can accommodate schema changes (there is no schema) and annotations, semistructured data may 
seem to be a solution to biological data integration problems where the schemas evolve with the progress of 
experimental techniques and scientific discovery. In the XML example, one could add a new field to an 
<entry> element or one could have a repeated <Source> field. Moreover, data integration may be performed 
simply by ignoring the structure and using one of the query languages developed for semistructured data or 
XML [12, 13, 14, 151. We believe this approach should be treated with a great deal of caution. Biological 
data has a very rich structure. We should not ignore that structure in our applications just because that 
structure evolves. The semistructured approach has the following serious dangers: 

0 
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Queries that would normally fail (i.e. they would not execute) because of a type error will now succeed. 
They will probably return the “empty” answer. 
Users who misunderstand the implicit structure of the data will, as a consequence of the previous point, 
be further confused by the results of queries. 
Optimization techniques that are essential to efficient data integration are much more difficult to obtain 
with semistructured data. 

In short, the use of semistructured formalisms and query languages, while they may simplify certain aspects 
of data integration will not eliminate the need for biologists to understand their data. 

However the ability to incorporate some aspects of semistructured data into our integration systems is 
clearly useful for dealing with evolution and for browsing. One would like, for example, to add a field to 
some structure without having to change a schema and all the applications that depend on it. Equally one 
would like to ask questions of the database that return some structural information (e.g. “Where in the 
database is ‘ubiquitin’?”). The internal structure of KleisliK2 will support this. Unlike many object- 
oriented and relational systems the internal representation of data in Kleisli and K2 is dynamic. This means 
that it is possible to add semistructured features to our existing query language or to support new query 
languages. 

<entry G lD=”g2280496 I D”> 
<AccNumber> AB005554 </AccNumber> 
<Description> Bacillus subtilis genomic DNA ... </Description> 
<SeqLength> 36448 </SeqLength> 
<Source> Bacillus subtilis </Source> 
<References> 

<Reference> 
<Title> Organization and transcription of the gluconate operon ... </Title> 
<Authors> <Author> Fujita,Y. </Author> <Author> Fujita,T. </Author> <Author> Miwa,Y. </Author>. . . 
</Authors> 

</Reference>. . . 
</References> I 

<Sequence> ccaaaagcag ... <ISequence> 
<Features> 
<Gene> 
<From> 178 </From> 
<To> 1584 </To> 
<Complement> true </Complement> 
<Gene-string> gntZ </Gene-string> 

</Gene > 
<Source> ... </Source>. . . 

</Features> 
</en try> 



3 

Apart from providing a low-level data format, XML will not do more for us until there is an agreed schema 
technology. At the time of writing there is a bewildering variety of proposals for adding structure to XML 
and no standard even for the simple task of representing relational data in XML has yet been defined. It is to 
be hoped that some form of type system for XML will soon gain widespread acceptance. 
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In addition, details about specific integration systems can be found as follows: 
1. The K2 prototype is available at h ~ : / / ~ \ ~ ~ 1 ; . c b i l . i ~ ~ e n i i . e d u , ~ ~ * ~ 2 ~ e b .  This page contains information 

about the system, as well as demos of queries. 
2. Information about Morphase can be found at httu:liwvw.cis.u~enn.edu!-dbhorphase/ 
Kleisli has been supplanted by K2 and is no longer available online. However, it continues to function in 
data integration projects within SmithKline Beecham, as well as forming the basis of the Tambis system at 
the University of Manchester, UK. 
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