Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

PDF Version Also Available for Download.

Description

Scope. The radiation chemistry of aqueous systems containing chlorinated hydrocarbons is investigated using a multi-pronged approach employing 60Co gamma ray and alpha particle irradiation experiments in conjunction with diffusion-kinetic modeling incorporating track structure simulations. The goal is to determine mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The information obtained is of a fundamental nature, but the radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management. Program Highlights. Radiation-induced production of H2 ... continued below

Creation Information

LaVerne, Jay A. December 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Scope. The radiation chemistry of aqueous systems containing chlorinated hydrocarbons is investigated using a multi-pronged approach employing 60Co gamma ray and alpha particle irradiation experiments in conjunction with diffusion-kinetic modeling incorporating track structure simulations. The goal is to determine mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The information obtained is of a fundamental nature, but the radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management. Program Highlights. Radiation-induced production of H2 and HCl from chlorinated hydrocarbons. 60Co gamma-radiolysis experiments and stochastic kinetic modeling have been used to investigated the radiation-induced yield of H2 and Cl- from aqueous solutions of 1,2-dichloroethane (1,2-DCE) and 1,1-dichloroethane (1,1-DCE) over the concentration range 1-80 mM. In deoxygenated solution, the yield of H2 from both 1,2-DCE and 1,1-DCE solutions decreases as the concentration of DCE is increased. The decrease in the H2 yield shows that the reaction of H atom with DCE does not lead to the production of H2. This observation is unexpected and reflects the reverse of the effect seen in the gas phase, where the reaction of H atom with 1,2-DCE and 1,1-DCE leads to the production of H2. The yield of Cl- from 1,2-DCE and 1,1-DCE solutions increases slightly from 2.8 ions/100eV to 3.6 over the concentration range 10-50 mM, demonstrating the increased competition of the DCE with intra-track processes. Comparison of the measured yields of Cl- with the predictions of stochastic kinetic modeling shows that the reactions of eaq- with 1,2-DCE and with 1,1-DCE are quantitative, and that the reaction of H atom with both DCEs leads to the production of Cl- (and Haq+). In aerated solution, the yield of Cl- from 1,2-DCE and from 1,1-DCE solutions is very significantly higher ({approx} x 3-4) than from deoxygenated solution. Furthermore, the observed yield is both dose and dose rate dependent. The mechanisms for Cl- production in aerated aqueous solutions of 1,2-DCE and of 1,1-DCE are currently under investigation. Rate coefficients for the reaction of eaq- and -OH with chlorinated hydrocarbons. There is considerable disagreement over the rate coefficients for the reaction of the primary radiation-produced reducing and oxidizing radicals from water, eaq- and -OH respectively, with 1,2-DCE and with 1,1-DCE. Electron pulse-radiolysis experiments monitoring the decay of eaq- have been used to measure the rate coefficients: 1,2 DCE eaq- + CH2Cl-CH2Cl ' CH2Cl-CH2- + Cl- k1 = 2.3 x 109 dm3 mole-1 s-1 1,1 DCE eaq- + CH3Cl-CHCl2 ' CH3-CHCl- + Cl- k2 = 3.5 x 109 dm3 mole-1 s-1 while competition kinetic experiments were employed to determine the rate coefficients: 1,2 DCE -OH + CH2Cl-CH2Cl ' CH2Cl-CHCl- + H2O k3 = 1.8 x 108 dm3 mole-1 s-1 1,1 DCE -OH + CH3Cl-CHCl2 ' CH3-CCl2- + H2O k4 = 1.1 x 108 dm3 mole-1 s-1 The values obtained are similar to those measured by Asmus and co-workers, but there is a significant discrepancy from the estimate of Getoff and co-workers for k1. Rate coefficient for the reaction of OH with thiocyanide ion. The rate coefficient for the reaction of the -OH radical with a chlorinated hydrocarbon is obtained by a competition experiment, in which the change in the radiation-induced yield of (SCN)2-- from an aqueous SCN- solution is monitored on the addition of the hydrocarbon. The mechanism for the radiation-induced formation of (SCN)2-- from a SCN- is complex and involves a number of equilibria. Careful electron pulse radiolysis experiments have been performed and analyzed, employing the full, complex reaction mechanism, to re-evaluated the rate coefficient for the fundamental reaction -OH + SCN- ' (HOSCN)-- k5 = 1.4 x 1010 dm3 mole-1 s-1 This reaction is central to the experimental determination of the rate coefficient of a solute with OH using the competition method. The value obtained for k5 is about 30% higher than that generally employed, and this has a major effect on the measured values for k3 and k4.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-90107--2004
  • Grant Number: FG02-04ER63744
  • DOI: 10.2172/850380 | External Link
  • Office of Scientific & Technical Information Report Number: 850380
  • Archival Resource Key: ark:/67531/metadc782447

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 3, 2016, 3:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

LaVerne, Jay A. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste, report, December 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc782447/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.