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trons by polar mole
ules: Appli
ation of e�e
tive-rangepotential theory to HClWim Vanroose,� C. W. M
Curdy,y and T. N. Res
ignozComputing S
ien
es, Lawren
e Berkeley National Laboratory, One Cy
lotron Road, Berkeley, CA 94720(Dated: September 11, 2003)We present a non-empiri
al potential model for studying threshold vibrational ex
itation of polarmole
ules by ele
tron impa
t. This work builds on the zero-range potential virtual state model ofGauya
q and Herzenberg (J. P. Gauya
q and A. Herzenberg, Phys. Rev. A 25, 2959 (1982)), usingknown analyti
 properties of the S-matrix for a dipole potential to predi
t the analyti
 
ontinuationof the negative ion potential 
urve into the 
ontinuum. We derive an equation that determines thenu
lear dynami
s whi
h 
an be solved without the need for an expansion in target vibrational states.The model is applied to e� �HCl and is found to 
apture the essential features of the observedex
itation 
ross se
tions, in
luding both the threshold peaks as well as os
illatory stru
tures atenergies above threshold.PACS numbers: 34.80.GsI. INTRODUCTIONVibrational ex
itation of the hydrogen halides by lowenergy ele
tron impa
t has 
ontinued to attra
t the at-tention of experimentalists and theorists for many years.Of parti
ular interest are the pronoun
ed threshold peaksin the vibrationally inelasti
 
ross se
tions whi
h were�rst observed by Rohr and Linder some twenty-�ve yearsago [1℄. These early observations prompted 
onsiderabledebate about me
hanisms that might be responsible forthe observed stru
tures and a variety of di�erent expla-nations were put forth.Two models were initially proposed to explain the ob-served threshold peaks. Dub�e and Herzenberg [2℄ andGauya
q and Herzenberg [3℄ argued that shape reso-nan
es 
ould not be involved sin
e the observed angu-lar distributions at threshold were isotropi
, suggestinga strong s-wave 
omponent (the ele
tron 
ollision ener-gies are less than 1 eV), whi
h in turn argued againsta resonant trapping me
hanism. The zero-range poten-tial model they developed assumed the problem involvesonly s-wave s
attering. A virtual state me
hanism wasproposed to a

ount for the enhan
ement of the wavefun
tion of a slow exiting ele
tron. When vibrational mo-tion was introdu
ed into the �xed-nu
lei pi
ture, nu
lear-ex
ited Feshba
h resonan
es appeared below the vibra-tional thresholds and, in their view, were responsible forthe observed stru
tures.A di�erent model, based on a non-lo
al proje
tion oper-ator theory, was proposed by Dom
ke and Cederbaum [4℄.Their treatment rests on the pi
ture of a dis
rete state in-tera
ting with a 
ontinuum and makes use of a proje
tionoperator resonan
e formalism [5℄ that provides a formallyexa
t des
ription of the nu
lear motion with non-lo
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omplex potentials. In their treatment, the threshold be-havior of the 
ross se
tions is a 
onsequen
e of the strong
oupling between a dis
rete resonan
e and a ba
kgrounddipole 
ontinuum that mixes s- and p-waves. The zero-range potential model and the non-lo
al proje
tion oper-ator theory were both parametrized to give a su

essfula

ounting of the observed threshold peaks.The early models were eventually followed by a se-ries of ab initio 
al
ulations, most notably non-adiabati
R-matrix 
al
ulations [6℄ that in
luded expli
it 
ouplingbetween ele
troni
 and nu
lear degrees of freedom, fore� �HF [7℄, e� �HCl [8℄ and e� �HBr [9℄ s
attering.These 
al
ulations were su

essful in a

ounting for thequalitative behavior of the observed 
ross se
tions. More-over, the R-matrix results, and subsequent theoreti
alanalyses [10, 11℄ of their asso
iated analyti
 stru
ture,gave a pi
ture of the dynami
s that was 
onsistent witha nu
lear-ex
ited Feshba
h resonan
e me
hanism.What all of these approa
hes have shown is that thesimple pi
ture of a resonan
e, whi
h lies 
lose to the realenergy axis for 
ompressed nu
lear geometries and adi-abati
ally evolves into an ele
troni
ally bound negativeion as the internu
lear distan
e in
reases, is drasti
allymodi�ed in the 
ase of a polar mole
ule. Fandreyer andBurke's [9℄ analysis of the e� �HBr S-matrix revealedthat there was a shape resonan
e, but the traje
tory ittra
ed when the internu
lear distan
e was varied was dis-
onne
ted from that of bound HBr�. As the mole
uleis stret
hed from its equilibrium value, the resonan
e isturned away from the real axis, moves o� into the lowerhalf of the 
omplex momentum (k) plane and never be-
omes a bound state.A bound anion state does appear for larger internu-
lear distan
es, but its behavior as the internu
ear dis-tan
e is de
reased is profoundly a�e
ted by the underly-ing ele
tron-dipole intera
tion [12℄. A polar mole
ularanion 
annot have a true \virtual state", that is, a statewith a purely imaginary k-value in the lower half plane,
lose to the real axis. If we tra
k the pole position of abound diatomi
 anion as the internu
lear separation is



2de
reased, then for some 
riti
al distan
e Ro the bind-ing energy will go to zero. If the distan
e is further de-
reased, then the pole passes through k=0 into the lowerhalf of the 
omplex momentum plane. For a nonpolarsystem, this traje
tory would be one that moves straightdown the negative imaginary k-axis. But for a polar sys-tem, there is a bran
h 
ut along this axis and the polesplits into mirror-image pairs on higher Riemann sheetsas it passes through the origin [13℄. The 'virtual state'traje
trory thus possesses a dis
ontinuous slope or 'kink'as it passes through the origin; the angles at whi
h themirror-image virtual state poles emerge from the originare uniquely determined by the value of the dipole mo-ment at R
[12, 13℄. The fa
t that the bound-state andresonan
e traje
tories do not 
onne
t is a dire
t 
onse-quen
e of the dipole �eld that strongly mixes the s andp-wave 
ontinua and is an example of generalized levelrepulsion in the 
ontinuum [14{17℄. This analyti
 stru
-ture was also predi
ted by Dom
ke [18℄ and 
on�rmed byFandreyer and Burke's 
al
ulations [11℄.The non-lo
al resonan
e model has been extensivelyre�ned over the past two de
ades and has been very su
-
essful in reprodu
ing details of the experimentally mea-sured e� �HX 
ross se
tions [19, 20℄. In the 
ase ofHCl [19℄, for example, it reprodu
es both the thresholdpeaks and the higher energy stru
ture 
aused by an outerwell in the bound portion of the HCl� potential energy
urve. This level of agreement would seem to indi
atethat the low-energy 
ollision dynami
s between ele
tronsand weakly polar diatomi
 mole
ules is 
ompletely un-derstood. So what motivation, one may ask, is there forrevisiting this problem?Our primary obje
tive here is the formulation of anab initio model whi
h 
aptures the essential features ofthe observed 
ross se
tions at low energies, does not re-quire an elaborate parametrization in its exe
ution andis appli
able to more 
ompli
ated systems. This in turnhas prompted us to reexamine the zero-range potentialmodel. Like Gauya
q and Herzenberg [3℄, we use e�e
tiverange theory as the starting point for deriving an equa-tion that determines the nu
lear dynami
s. What we endwith is a model whi
h, stru
turally at least, resemblesthe lo
al 
omplex potential or \Boomerang" model [21℄whi
h has proven to be a very useful tool in des
ribingresonant vibrational ex
itation, ie. a 
omplex, inhomo-geneous wave equation whi
h determines the low-energy
ollision 
ross se
tions. Furthermore, the equation 
an besolved without resorting to an expansion in target vibra-tional states. Another new element in our formulation isthe use of a dipole 
oupled partial-wave model to predi
tthe analyti
 
ontinuation of the negative ion potential
urve into the 
ontinuum, whi
h allows one to build anon-empiri
al model whose only input is the potential
urve of the anion in the region where it is bound, thepotential 
urve of the target and its R-dependent dipolemoment.Like the boomerang model, whi
h has re
ently beenextended to look at resonant nu
lear motion in several

dimensions [22, 23℄, our e�e
tive-range model 
an beextended to polyatomi
s, with only modest 
omputa-tional requirements, provided a suitable anion poten-tial surfa
e 
an be 
onstru
ted. Interesting thresholdstru
tures have, in fa
t, been observed in the vibrationalex
itation 
ross se
tions of polyatomi
 targets, su
h asCO2 [24℄ and CS2 [25℄, whi
h are non-polar in their equi-librium geometry, but a
quire a transient dipole momentupon bending. While our initial appli
ations here arefo
used on e� �HCl, the appli
ation of this model topolyatomi
 targets has provided additional motivationfor the present development.The outline of this paper is as follows. The theory ispresented in the following two se
tions. In Se
tion II,we dis
uss the pro
edure we use to 
onstru
t the adia-bati
 potential 
urve for the negative ion and its analyti

ontinuation into the 
omplex momentum plane. Thederivation of the e�e
tive-range model is then outlinedin Se
tion III. Our results for e� �HCl vibrational ex-
itation are presented in Se
tion IV. Se
tion V 
ontainssome 
on
luding remarks.II. POTENTIAL CURVE OF THE NEGATIVEIONThe prin
ipal assumption of the e�e
tive-rangemodel, for very low-energy ele
tron s
attering by polarmole
ules, is that the target provides the ele
tron witha potential well that is on the verge of binding an extraele
tron. Thus small displa
ements of the nu
lei abouttheir equilibrium position 
an 
ause this bound state toappear or vanish. To des
ribe this dynami
s, we mustbe able to 
onstru
t an adiabati
 potential 
urve for themole
ular anion. This is not a problem for nu
lear ge-ometries where the anion is ele
troni
ally bound: one
an perform ab initio stru
ture 
al
ulations for the boundportion of the potential 
urve. For the unbound portionof the 
urve, we rely on an analysis of the long-range partof the ele
tron-mole
ule intera
tion, whi
h is dominatedby the dipole �eld.The binding properties of a �xed dipole potentialare well known and have been studied by a numberof authors. Here, we follow the treatment of L�evy-Leblond [26℄. The S
hr�odinger equation for an ele
tronin a dipole �eld is given by:��12�+ eD(R) � rr3 �E� (r; �; � ;R) = 0; (1)where D is the dipole moment and depends on the inter-nu
lear separation, R. Eq. (1) is separable in spheri
alpolar 
oorodinates. Choosing the z-axis to 
oin
ide withthe dipole moment, D, and writing (r; �; � ;R) = 1rP (r)�(�)eim�; (2)gives the following equations for the radial and angular



3parts of the wave fun
tion:�� d2dr2 + ln(ln + 1)r2 � 2E�P (r) = 0 (3)and � 1sin � dd� �sin � dd��� m2sin2 � � 2D 
os �+ln(ln + 1)��n(�) = 0 (4)where ln(ln + 1) is a sparation 
onstant and m is aninteger. The separation 
onstant is written in the formof an e�e
tive angular momentum, ln, and is obtained bysolving for the eigenvalues of the angular equation, Eq.(4). We need only 
onsider the lowest eigenvalue (l0)for the m = 0 
ase sin
e this is the only angular modethat gives rise to an attra
tive 
entrifugal potential inEq.(3) [2℄. L�evy-Leblond [26℄ 
onsidered this problemand derived a power series for the solution:l0(R)(l0(R) + 1) = �2D(R)23 + 1130 �2D(R)23 �2�133450 �2D(R)23 �3 + ::: (5)For a sub
riti
al dipole moment (D < :639eao), the 
en-trifugal term l0 will be a non-integral negative numberbetween � 12 and zero. We will hen
eforth drop the sub-s
ript 0 on l with the understanding that it refers to thesolution of Eq. (5).A non-integral l-value in the radial equation leads to amulti-valued Jost fun
tion, Fl(K) [13, 27℄. Indeed, 
loseto the origin, the Jost fun
tion for 
ontinuous angularmomentum [12℄ redu
es to a series that has terms thathave non-integer exponentsFl(K ;R) = a0(R) + a1(R)K2 + � � �+b1(R)K2l+1 + b2(R)K2l+3 + � � � ; (6)where K is the momentum of the ele
troni
 state relativeto the threshold. A zero of the Jost fun
tion Fl(K ;R)
orresponds to a pole of the S-matrix. For a bound state,the zero lies on the positive imaginaryK-axis. Its behav-ior near threshold (K = 0) depends 
riti
ally on l, whi
hin turn depends on the dipole moment through Eq. (5).Sin
e l is negative for the 
ase of a sub
riti
al dipole, theK2l+1 term dominates the K2 term in Eq. (6), so 
loseto the threshold, the most important terms of the Jostfun
tion areFl(K ;R) ' a0(R) + b1(R)K2l+1: (7)Let Ro denote the nu
lear 
oordinate at whi
h the ele
-tron be
omes unbound, ie. K(Ro) = 0, and expand the
oeÆ
ients a0(R) and b1(R) about that point. We �ndthat the 
ondition for a zero of the Jost fun
tion nearthreshold is0 = a0(Ro)0(R�Ro) + b1(Ro)K2l+1 (8)

or K(R) = i�(R �Ro)1=(2l(R)+1); (9)where we have de�nedi� � (�a0(Ro)0=b1(Ro))1=(2l(R)+1) (10)We 
an now 
ontrast the 
ase of pure s-wave s
atteringfrom a non-polar target with the polar 
ase. When Dvanishes, l is zero and we getK(R) / i(R�Ro); (11)that is, the pole moves linearly along the imaginary k-axis as R passes through Ro. For a weakly polar target,l(R) ' �2D2=3 and we have, for small D,K(R) / i(R�Ro)1=(1� 4D23 ) � i(R�Ro)1+ 4D23 : (12)There is now a bran
h point at R = Ro; if D is irra-tional, there are in�nitely many bran
hes. We will putthe bran
h line along the negative imaginary axis.For R > Ro, k is positive imaginary, 
orresponding toa bound state. As R de
reases through Ro, k be
omes
omplex. We will 
onsider its traje
tory on what Herzen-berg [13℄ 
alls `the �rst 
ounter
lo
kwise sheet', that is,measuring the phase of k 
ounter
lo
kwise from the pos-itive real axis. From Eq. (12), we getK(R) / (Ro �R)1+ 4D23 ei�( 32+ 4D23 ); R < Ro (13)The phase of k is greater than 3�=2, ie., it is on the fourthquadrant of the se
ond Riemann sheet, a dire
t 
onse-quen
e of the attra
tive nature of the e�e
tive potential.There is a mirror-image pole in the third quadrant with aphase angle of ��(1=2+4D2=3), as well as mirror-imagepairs on higher Riemann sheets. These we ignore.We show the traje
tory of a bound state in Fig. 1 fora 
ase where the dipole strength de
reases monotoni
allywith R. The de
reasing dipole strength 
auses the tra-je
tory to bend ba
k toward the imaginary k-axis afterit passes through the origin.With the e�e
tive ele
tron momentum de�ned by Eq.(9), we 
onstru
t the negative ion potential 
urve asVion(R) = Vneutral(R) + 12K(R)2: (14)By 
onstru
tion, Vion 
rosses Vneutral at Ro and a
quiresa negative imaginary part for R < Ro. For R > Ro, Vionis real and 
an be 
al
ulated by ab initio te
hniques. Forour pruposes, it is presumed to be known. The singleparameter � in Eq. (9) is 
hosen so that we get a smooth
onne
tion between the inner and outer portions of theion 
urve.The behavior of Vion di�ers markedly from what is seenin the 
ase of a shape resonan
e. In the extreme 
ase ofa pure virtual state that 
an exist in the absen
e of adipole moment, the traje
tory of K(R) would follow the
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FIG. 1: Traje
tory of a pole of the S-matrix in the 
om-plex K-plane for the dipole potential problem dis
ussed intext. We used a dipole moment fun
tion appropriate for HCl.The 
ir
les 
orrespond to internu
lear distan
e values of 1.25,1.92276, 2.5, 3.07724, 3.75 and 4.42276 bohr.simple parametrisationK(R) = i(R�Ro), 
hanging signas R passes through Ro. But 12K(R)2 = � 12 (R � R0)2is always real and negative, independent of the sign of(R � R0). This means that for a pure virtual state,the Vion 
urve is real and lies below Vneutral ex
ept atthe point Ro where they tou
h. The introdu
tion of aweak dipole moment does not dramati
ally alter this pi
-ture: K(R) will move o� the imaginary axis as it passesthrough the origin and Vion will a
quire a negative imagi-nary 
omponent. But for a weak dipole moment, the realpart of Vion will generally fall below the Vneutral potential
urve.We are now in a position to derive the nu
lear waveequation of our dynami
al model.III. NUCLEAR DYNAMICS IN THEEFFECTIVE-RANGE MODELThe basi
 idea behind the e�e
tive-range model is thatfor very low-energy s
attering the wave fun
tion whi
hdes
ribes the s
attered ele
tron is independent of energyinside some radius ro [28℄. Inside ro, the potential isstrong and the ele
tron follows the nu
lei adiabati
ally.The logarithmi
 derivative of wave fun
tion at r = ro,f(R) = ( 1 (r ;R) � (r ;R)�r )r=ro (15)is introdu
ed to avoid 
al
ulations in the inner region.The log-derivative depends on the internu
lear geometry,but is assumed to be independent of the 
ollision energy,on the assumption that the latter is small 
ompared tothe internal potential.Using S-matrix boundary 
onditions, the wave fun
-tion in the outer region r > ro is repla
ed by the asymp-

toti
 form 
orresponding to the lowest angular mode ofthe �xed dipole problem: (r ;R) = h�l (k0r)�0(R) +Xn Anh+l (knr)�n(R); (16)where �n(R) is a target vibrational fun
tion with energyEn, kn = p2(E �En) is the ele
tron 
hannel momen-tum and h+(�) is an outgoing(in
oming) Hankel fun
tion.Note that only the An asso
iated with real (open) kn
ontribute to the 
ross se
tions. These in turn are deter-mined by mat
hing the log-derivative of  at ro. The log-derivative f(R) is generally treated as a semi-empiri
alparameter, but with the information of the previous se
-tion, it 
an be determined.We assume that the wave fun
tion in the inner region
an be equated with the adiabati
 Siegert state asso
i-ated with Vion, whi
h is a purely outgoing wave at larger: limr!1 (r ;R) � exp (iK(R)r � l(R)�=2) ; (17)where K(R) is de�ned by the relative spa
ing betweenneutral and the anion surfa
e (Eq. (14)):K(R) =p2(Vion(R)� Vneutral(R)): (18)It follows that f(R) = iK(R).Mat
hing the logarithmi
 derivatives of (17) and (16)at r = ro leads toiK(R) = k0h�l (k0ro)0�0(R) +Pn knAnh+l (knro)0�n(R)h�l (k0ro)�0(R) +PnAnh+l (knro)�n(R)(19)We further reorganize the mat
hing equation using thefa
t that �n is a vibrational state of the neutral Hamil-tonian Hneutralkn�n(R) = p2(E �En)�n(R)= p2(E �Hneutral(R))�n(R) (20)and repla
e ea
h appearan
e of kn with the operatorp2(E �Hneutral(R)). The mat
hing equation now be-
omesiK(R) [h�l (k0ro)�0(R) +PnAnh+l (knro)�n(R)℄ =p2(E �Hneutral)[h�l (k0ro)0�0(R)+PnAnh+l (knro)0�n(R)℄ (21)Eq. (21) 
an be further simpli�ed if we assume ro
an be 
hosen large enough so that the Hankel fun
tions
an be repla
ed by their asymptoti
 forms, h+=�l (kr) �exp(+= � ikr � l�=2). With this assumption Eq. (21),after rearrangement, be
omes



5��K(R) +p2(E �Hneutral)�Xn Anei(kn+k0)ro�n(R) = (K(R) + k0)�0(R) (22)Note that the fa
tors ei(k0+kn)ro 
an be in
orporated intoa rede�nition of the 
oeÆ
ients An without 
hanging theex
itation 
ross se
tions, whi
h are proportional to jAnj2.So the mat
hing equation is now independent of ro, as inthe zero-range potential model [28℄.Eq. (22) 
an be 
onverted to a set of linear equationsfor the unknown 
oeÆ
ients An by multiplying from theleft with �n and integrating over R. This is the pro
e-dure used in refs. [2℄ and [3℄. There 
an, however, be
onvergen
e problems with su
h a linear system [28℄. Inmany 
ases, the negative ion 
urve is very di�erent fromthe neutral 
urve and may even be disso
iative, in whi
h
ase the expansion in vibrational states of the neutralmay not 
onverge.Eq. (22) 
an be solved without an expansion in targetvibrational states. If we de�ne the nu
lear wave fun
tion,	(R) as 	(R) =Xn Anei(kn+k0)ro�n(R) (23)

we obtain the inhomogeneous di�erential equation:��K(R) +p2(E �Hneutral)�	(R) =(K(R) + k0)�0(R) (24)Eq. (24) 
an easily be solved in ways that avoid the
onvergen
e problems asso
iated with an expansion intarget vibrational states.To solve Eq. (24), we must spe
ify appropriate bound-ary 
onditions. For that purpose, it is useful to re
astEq. (24) into the form of a driven S
hr�odinger equation.If we de�ne	(R) = �K(R) +p2(E �Hneutral)�
(R); (25)we 
an then write Eq. (24) as��K(R) +p2(E �Hneutral)��K(R) +p2(E �Hneutral)�
(R) = (K(R) + k0)�0(R) (26)or, using Eq.(14), as�2(E �Hion) + hp2(E �Hneutral);K(R)i�
(R) =(K(R) + k0)�0(R) (27)As R!1,K(R) goes to a 
onstant and the 
ommutatorin Eq. (27) vanishes, giving:(E �Hion)
(R) =12 (K(R) + k0)�0(R); R!1(28)It is 
lear from Eq. (28) that 
(R) is e�e
tivelythe wave fun
tion that des
ribes the temporary mole
-ular state that moves asymptoti
ally on the negative ion
urve. For total energies E below the disso
iative atta
h-ment threshold, 
(R) will go to zero as R ! 1, whileabove the disso
iation threshold, the appropriate bound-ary 
ondition for 
(R) is that it behave asymptoti
allyas a purely outgoing wave. Having solved the nu
learwave equation (NWE), Eq. (27), the ex
itation ampli-tudes are then evaluated by proje
ting the solution onto

a target vibrational state:An = Z �n(R)	(R)dR= Z �n(R)(K(R) + kn)
(R)dR (29)If we drop the 
ommutator in Eq. (27) entirely, onthe assumption, in the sprit of the Born-Oppenheimerapproximation, that the nu
lear kineti
 energy operator
ommutes with the logarithmi
 derivative de�ned in Eq.(15), then we need only to deal with an inhomogeneousS
hr�odinger equation (BO-NWE), Eq. (28), at all R. Inthe 
ase of a polar target, however, the behavior of K(R)as it passes through the origin (Fig. 1) invalidates thisapproximation. Consequently, as we will see below, theNWE and BO-NWE 
an give very di�erent results 
loseto vibrational thresholds.IV. APPLICATION TO HCLWe have applied the previously outlined theory to the
ase of e� �HCl vibrational ex
itation. The parametersrequired for the nu
lear wave equation were obtained as



6
1.5 2 2.5 3 3.5 4 4.5 5

0.00

0.04

0.08

-0.34

-0.33

-0.32

-0.31

-0.3

-0.29

PSfrag repla
ements Width(au) Energy(au)Internu
lear distan
e (au)FIG. 2: Neutral and anion potential 
urves for HCl. Solid
urve: neutral ground state with lowest three vibrational lev-els indi
ated; dashed 
urves: real and imaginary parts of an-ion 
urve.follows. For the bound portion of the HCl� potential
urve, we used the ab initio 
on�guration-intera
tion 
al-
ulations of �Astrand and Karlstrom [29℄. Their 
al
ula-tions give a 2� HCl� 
urve that has a shallow outer-well
entered at 4 bohr and 
rosses the neutral HCl groundstate 
urve near 2.5 bohr. For the ground-state HCl
urve, we used a Morse potential with parameters takenfrom the work of Cizek, Hora
ek and Dom
ke [30℄. Theanalyti
 
ontinuation of the HCl� 
urve was 
arried outusing the dipole 
oupled partial-wave model outlined inSe
. II. This pro
edure requires the R-dependent dipolemoment of the neutral target. This data was taken fromthe ab initio 
al
ulations of ONeil, Rosmus, Nor
ross andWerner [31℄. We used a value of 2.54 bohr for the 
ross-ing point, Ro. Finally, we 
hose �=0.4 in Eq. (9) tosmoothly 
onne
t the real and 
omplex portions of theanion 
urve. The potential 
urves for HCL and HCl� weused are depi
ted in Fig. 2.The ion 
urve is obtained by adding 12K(R)2 to theneutral HCl potential (Eq. (14)). For R > Ro, K(R)is positive imaginary; Vion is purely real and lies belowVneutral, 
orresponding to an ele
troni
ally bound state.For R < Ro, K(R) lies in the fourth quadrant of the
omplex plane and Vion is 
omplex. Sin
e K(R) staysrelatively 
lose to the negative imaginary axis, the realpart of Vion stays below Vneutral.To solve the NWE (Eq. 27) and BO-NWE (Eq. 28)equations, we used a dis
rete variable representation(DVR) of the operators Hneutral(R) and K(R) basedon Lobatto shape fun
tions [32℄. The DVR provides di-agonal representation of any lo
al operator (K(R) andVneutral(R), in this 
ase), while the matrix elementsof the derivative operators needed to express the nu-
lear kineti
 energy are given by simple analyti
 ex-pressions [32℄. For 
al
ulations at energies above thethreshold for disso
iative atta
hment, we need to im-pose outgoing-wave boundary 
onditions in solving theNWE and BO-NWE equations. This is easily a

om-plished within the DVR [33℄ by mapping the internu
lear
oordinate with an exterior 
omplex s
aling transforma-

tion:R!M(R) = (R R < R0;R0 + (R�R0)ei� R � R0; (30)where R0 is lies outside the intera
tion region. Exte-rior 
omplex s
aling automati
ally imposes the outgoingwave boundary 
ondition [33℄. The NWE and BO-NWEare then repla
ed by a set of 
omplex linear equations.For the NWE, we need a representation of the operatorp2(E �Hneutral). This is a

omplished by diagonaliz-ing Hneutral in the DVR basis and expressing the opera-tor as:p2(E �Hneutral) �Xi ui(R)p2(E �Ei)ui(R0) (31)where Ei and ui are the eigenvalues and eigenve
tors ofHneutral in the �nite DVR basis. 200 DVR fun
tionson a 20 bohr interval with R0 =13 bohr were found togive 
onverged results. The ex
itation 
oeÆ
ients, givenby Eq. (29), were also obtained using Gauss-Lobattoquadrature with a DVR representation of the target vi-brational states. The vibrational ex
itation 
ross se
tionsare expressed in terms of the ex
itation 
oeÆ
ients by theformula �0n = �k20 knk0 jAnj2 (32)In Fig. 3, we plot the 0! 1 and 0! 2 
ross se
tionsobtained from the NWE and BO-NWE models. Themost signi�
ant di�eren
es between the two models areevident in the immediate vi
inity of the n = 1 and n = 2vibrational thresholds, where the NWE produ
es sharperthreshold stru
tures. The threshold regions were foundto be quite sensitive to the detailed behavior of K(R)in the 
rossing region. Unfortunately, the 
al
ulations of�Astrand and Karlstrom [29℄, whi
h we used in the 
on-stru
tion of the anion 
urve, give only three points in thevi
inity of the 
rossing, making it diÆ
ult to determinepre
ise values for both � and Ro. Small 
hanges in Ro al-ter the magnitude and shape of the threshold peaks, butthis sensitivity is greatly redu
ed as soon as the 
ollisionenergy is a few tenths of an eV above a vibrational thresh-old, where the NWE and BO-NWE models give similarresults. The os
illatory stru
tures between .7 and .8 eVare asso
iated with quasibound levels supported by theouter well in the HCL� 
urve (
f Fig 2).The results 
omputed with the NWE and BO-NWEmodels are 
ompared with the experiment in Fig. 4. Forthe 0! 1 
ross se
tion, we show the experimental valuesof S
hafer and Allan [34℄ from threshold to .5 eV; for
ollision energies above .5 eV, we use the more re
enthigh resolution data of Allan et al. [19℄. The 0! 2 datais taken from S
hafer and Allan and does not have theresolution needed to display the outer well stru
tures.To fa
ilitate the 
omparison with theory, the numeri
alresults were 
onvoluted with a Gaussian of 20 meV width.The experimental results were all reported in arbitatry
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Energy (eV)FIG. 3: Vibrational ex
itation 
ross se
tions for HCl 
om-puted with NWE and BO-NWE models. Solid 
urves: NWE;dashed 
urves: BO-NWE. Top panel: 0 ! 1 
ross se
tion;bottom panel: 0! 2 
ross se
tion.units and were hen
e normalized to the theoreti
al values.As previously mentioned, the 
al
ulations are extremelysensitive to details of the anion potential 
urve in thevi
inity of its 
rossing with the neutral and the ab initiodata from whi
h our models were 
onstru
ted leaves someun
ertainty about this region. Nevertheless, it is 
learthat the model 
al
ulations 
apture the essential featuresof the observed ex
itation 
ross se
tions.V. DISCUSSIONWe have formulated a model for low-energy ele
tron-mole
ule s
attering that 
an be used in situations wherethe 
ollision dynami
s is e�e
ted by the presen
e of avirtual state. The formulation is based on a zero-rangemodel that approximates the ele
tron-mole
ule intera
-tion by a mat
hing 
ondition that is independent of en-ergy but 
hanges with target nu
lear geometry.The zero-range model was originally presented as anin�nite set of linear equations with parameters that wereadjusted to �t experimental observations. Our reformu-lation of the zero-range model has a
hieved two prin
ipalgoals. The �rst is to obviate the need for a semi-empiri
aldetermination of the model parameters by deriving anapproximation to the 
omplete anion potential 
urve us-
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Energy (eV)FIG. 4: Vibrational ex
itation 
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tions for HCl. Com-parison of NWE and BO-NWE model results with experi-ment. Solid 
urves: NWE; dashed 
urves: BO-NWE; dotted
urves: experimental results (see text for explanation). Toppanel: 0! 1 
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ross se
tion.ing properties of ele
tron-dipole s
attering. The advan-tage of su
h an approa
h is that ab initio input 
an beprovided by standard quantum 
hemistry tools sin
e weonly require information on neutral and anion potential
urves for 
on�gurations where they are ele
troni
allybound. We also need the dipole moment of the neutralas a fun
tion of nu
lear geometry. In parti
ular, �xed-nu
lei ele
tron-mole
ule s
attering 
al
ulations are notrequired to determine the model parameters.The se
ond feature of the reformulated zero-rangemodel is that the in�nite system of linear equations 
anbe re
ast in the form of an inhomogeneous di�erentialequation or nu
lear wave equation. This obviates theneed for an expansion in target vibrational states, whi
h
an diverge at energies above the threshold for disso
ia-tive atta
hment. More importantly, it provides a viablepath to extending the treatment to polyatomi
 targets.To illustrate the method, we have revisited the prob-lem of vibrational ex
itation of HCl by ele
tron impa
tand showed, for the �rst time, that a simple zero-rangemodel predi
ts the os
illating stru
tures in the 
ross se
-tions. These os
illations originate from the shallow outerwell in the HCl� potential 
urve and have been predi
tedby the proje
tion operator theory and 
on�rmed experi-



8mentally. While our 
al
ulations reprodu
e essential fea-tures of the observed ex
itation 
ross se
tions, the 
orre-sponden
e with experimental data is not perfe
t. This is
aused by un
ertainties in the available ab initio data weused as input and the inability to treat the p-wave shaperesonan
e in our model, whi
h is known to play an im-portant role at higher energies. Indeed, a disadvantageof the 
urrent formulation is its limitation to low energys-wave s
attering. There are any interesting problems inele
tron-mole
ule s
attering where the 
ross se
tions dis-play both low-energy virtual state e�e
ts and the e�e
tsof shape resonan
es at higher energies and the 
urrrentapproa
h is not able to deal with these situations in auni�ed way.The present formulation of the zero-range model 
an

be extended to small polyatomi
 targets with modest
omputational e�ort and 
al
ulations on the e� �CO2system are 
urrently underway.A
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