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We present a non-empirical potential model for studying threshold vibrational excitation of polar
molecules by electron impact. This work builds on the zero-range potential virtual state model of
Gauyacq and Herzenberg (J. P. Gauyacq and A. Herzenberg, Phys. Rev. A 25, 2959 (1982)), using
known analytic properties of the S-matrix for a dipole potential to predict the analytic continuation
of the negative ion potential curve into the continuum. We derive an equation that determines the
nuclear dynamics which can be solved without the need for an expansion in target vibrational states.
The model is applied to e — HCI and is found to capture the essential features of the observed
excitation cross sections, including both the threshold peaks as well as oscillatory structures at

energies above threshold.

PACS numbers: 34.80.Gs

I. INTRODUCTION

Vibrational excitation of the hydrogen halides by low
energy electron impact has continued to attract the at-
tention of experimentalists and theorists for many years.
Of particular interest are the pronounced threshold peaks
in the vibrationally inelastic cross sections which were
first observed by Rohr and Linder some twenty-five years
ago [1]. These early observations prompted considerable
debate about mechanisms that might be responsible for
the observed structures and a variety of different expla-
nations were put forth.

Two models were initially proposed to explain the ob-
served threshold peaks. Dubé and Herzenberg [2] and
Gauyacq and Herzenberg [3] argued that shape reso-
nances could not be involved since the observed angu-
lar distributions at threshold were isotropic, suggesting
a strong s-wave component (the electron collision ener-
gies are less than 1 eV), which in turn argued against
a resonant trapping mechanism. The zero-range poten-
tial model they developed assumed the problem involves
only s-wave scattering. A virtual state mechanism was
proposed to account for the enhancement of the wave
function of a slow exiting electron. When vibrational mo-
tion was introduced into the fixed-nuclei picture, nuclear-
excited Feshbach resonances appeared below the vibra-
tional thresholds and, in their view, were responsible for
the observed structures.

A different model, based on a non-local projection oper-
ator theory, was proposed by Domcke and Cederbaum [4].
Their treatment rests on the picture of a discrete state in-
teracting with a continuum and makes use of a projection
operator resonance formalism [5] that provides a formally
exact description of the nuclear motion with non-local
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complex potentials. In their treatment, the threshold be-
havior of the cross sections is a consequence of the strong
coupling between a discrete resonance and a background
dipole continuum that mixes s- and p-waves. The zero-
range potential model and the non-local projection oper-
ator theory were both parametrized to give a successful
accounting of the observed threshold peaks.

The early models were eventually followed by a se-
ries of ab initio calculations, most notably non-adiabatic
R-matrix calculations [6] that included explicit coupling
between electronic and nuclear degrees of freedom, for
e~ —HF [7], e —HCI [8] and e~ — HBr [9] scattering.
These calculations were successful in accounting for the
qualitative behavior of the observed cross sections. More-
over, the R-matrix results, and subsequent theoretical
analyses [10, 11] of their associated analytic structure,
gave a picture of the dynamics that was consistent with
a nuclear-excited Feshbach resonance mechanism.

What all of these approaches have shown is that the
simple picture of a resonance, which lies close to the real
energy axis for compressed nuclear geometries and adi-
abatically evolves into an electronically bound negative
ion as the internuclear distance increases, is drastically
modified in the case of a polar molecule. Fandreyer and
Burke’s [9] analysis of the e — HBr S-matrix revealed
that there was a shape resonance, but the trajectory it
traced when the internuclear distance was varied was dis-
connected from that of bound HBr—. As the molecule
is stretched from its equilibrium value, the resonance is
turned away from the real axis, moves off into the lower
half of the complex momentum (k) plane and never be-
comes a bound state.

A bound anion state does appear for larger internu-
clear distances, but its behavior as the internucear dis-
tance is decreased is profoundly affected by the underly-
ing electron-dipole interaction [12]. A polar molecular
anion cannot have a true “virtual state”, that is, a state
with a purely imaginary k-value in the lower half plane,
close to the real axis. If we track the pole position of a
bound diatomic anion as the internuclear separation is



decreased, then for some critical distance R, the bind-
ing energy will go to zero. If the distance is further de-
creased, then the pole passes through k=0 into the lower
half of the complex momentum plane. For a nonpolar
system, this trajectory would be one that moves straight
down the negative imaginary k-axis. But for a polar sys-
tem, there is a branch cut along this axis and the pole
splits into mirror-image pairs on higher Riemann sheets
as it passes through the origin [13]. The ’virtual state’
trajectrory thus possesses a discontinuous slope or ’kink’
as it passes through the origin; the angles at which the
mirror-image virtual state poles emerge from the origin
are uniquely determined by the value of the dipole mo-
ment at R.[12, 13]. The fact that the bound-state and
resonance trajectories do not connect is a direct conse-
quence of the dipole field that strongly mixes the s and
p-wave continua and is an example of generalized level
repulsion in the continuum [14 17]. This analytic struc-
ture was also predicted by Domcke [18] and confirmed by
Fandreyer and Burke’s calculations [11].

The non-local resonance model has been extensively
refined over the past two decades and has been very suc-
cessful in reproducing details of the experimentally mea-
sured e~ — HX cross sections [19, 20]. In the case of
HCI [19], for example, it reproduces both the threshold
peaks and the higher energy structure caused by an outer
well in the bound portion of the HCl™ potential energy
curve. This level of agreement would seem to indicate
that the low-energy collision dynamics between electrons
and weakly polar diatomic molecules is completely un-
derstood. So what motivation, one may ask, is there for
revisiting this problem?

Our primary objective here is the formulation of an
ab initio model which captures the essential features of
the observed cross sections at low energies, does not re-
quire an elaborate parametrization in its execution and
is applicable to more complicated systems. This in turn
has prompted us to reexamine the zero-range potential
model. Like Gauyacq and Herzenberg [3], we use effective
range theory as the starting point for deriving an equa-
tion that determines the nuclear dynamics. What we end
with is a model which, structurally at least, resembles
the local complex potential or “Boomerang” model [21]
which has proven to be a very useful tool in describing
resonant vibrational excitation, ie. a complex, inhomo-
geneous wave equation which determines the low-energy
collision cross sections. Furthermore, the equation can be
solved without resorting to an expansion in target vibra-
tional states. Another new element in our formulation is
the use of a dipole coupled partial-wave model to predict
the analytic continuation of the negative ion potential
curve into the continuum, which allows one to build a
non-empirical model whose only input is the potential
curve of the anion in the region where it is bound, the
potential curve of the target and its R-dependent dipole
moment.

Like the boomerang model, which has recently been
extended to look at resonant nuclear motion in several

dimensions [22, 23], our effective-range model can be
extended to polyatomics, with only modest computa-
tional requirements, provided a suitable anion poten-
tial surface can be constructed. Interesting threshold
structures have, in fact, been observed in the vibrational
excitation cross sections of polyatomic targets, such as
CO» [24] and CS [25], which are non-polar in their equi-
librium geometry, but acquire a transient dipole moment
upon bending. While our initial applications here are
focused on e~ — HCI, the application of this model to
polyatomic targets has provided additional motivation
for the present development.

The outline of this paper is as follows. The theory is
presented in the following two sections. In Section II,
we discuss the procedure we use to construct the adia-
batic potential curve for the negative ion and its analytic
continuation into the complex momentum plane. The
derivation of the effective-range model is then outlined
in Section III. Our results for e~ — HCI vibrational ex-
citation are presented in Section IV. Section V contains
some concluding remarks.

II. POTENTIAL CURVE OF THE NEGATIVE
ION

The principal assumption of the effective-range
model, for very low-energy electron scattering by polar
molecules, is that the target provides the electron with
a potential well that is on the verge of binding an extra
electron. Thus small displacements of the nuclei about
their equilibrium position can cause this bound state to
appear or vanish. To describe this dynamics, we must
be able to construct an adiabatic potential curve for the
molecular anion. This is not a problem for nuclear ge-
ometries where the anion is electronically bound: one
can perform ab initio structure calculations for the bound
portion of the potential curve. For the unbound portion
of the curve, we rely on an analysis of the long-range part
of the electron-molecule interaction, which is dominated
by the dipole field.

The binding properties of a fixed dipole potential
are well known and have been studied by a number
of authors. Here, we follow the treatment of Lévy-
Leblond [26]. The Schrodinger equation for an electron
in a dipole field is given by:

<—%A +e% - E) b(r,8,6:R) =0, (1)

where D is the dipole moment and depends on the inter-
nuclear separation, R. Eq. (1) is separable in spherical
polar coorodinates. Choosing the z-axis to coincide with
the dipole moment, D, and writing

Y(r,6,6: R) = ~P(r)O(6)e™. &)

gives the following equations for the radial and angular



parts of the wave function:
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where 1,(l,, + 1) is a sparation constant and m is an
integer. The separation constant is written in the form
of an effective angular momentum, [,,, and is obtained by
solving for the eigenvalues of the angular equation, Eq.
(4). We need only consider the lowest eigenvalue (lo)
for the m = 0 case since this is the only angular mode
that gives rise to an attractive centrifugal potential in
Eq.(3) [2]. Lévy-Leblond [26] considered this problem
and derived a power series for the solution:

_2D(R)> 11 <M>2

lo(R)(lo(R) +1) = SRR 3
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For a subcritical dipole moment (D < .639¢ea,), the cen-
trifugal term [y will be a non-integral negative number
between f% and zero. We will henceforth drop the sub-
script 0 on [ with the understanding that it refers to the
solution of Eq. (5).

A non-integral [-value in the radial equation leads to a
multi-valued Jost function, F;(K) [13, 27]. Indeed, close
to the origin, the Jost function for continuous angular
momentum [12] reduces to a series that has terms that
have non-integer exponents

FI(K;R) = ag(R) + a1 (R)K?* + - --
+b (R) K 4 by(R)KHH3 ... (6)

where K is the momentum of the electronic state relative
to the threshold. A zero of the Jost function F;(K ; R)
corresponds to a pole of the S-matrix. For a bound state,
the zero lies on the positive imaginary K-axis. Its behav-
ior near threshold (K = 0) depends critically on I, which
in turn depends on the dipole moment through Eq. (5).
Since [ is negative for the case of a subcritical dipole, the
K?*! term dominates the K2 term in Eq. (6), so close
to the threshold, the most important terms of the Jost
function are

Fi(K ;R) ~ ag(R) + b1 (R) K+, (7)

Let R, denote the nuclear coordinate at which the elec-
tron becomes unbound, ie. K(R,) = 0, and expand the
coefficients ag(R) and b1 (R) about that point. We find
that the condition for a zero of the Jost function near
threshold is

0=aog(R,) (R— R,) + b1 (R,) K*'*! (8)

or
K(R) =iB(R — R,)"/lHR)+1) (9)
where we have defined
if = (=ao(R,)' /b1 (R,))"/ I+ (10)

We can now contrast the case of pure s-wave scattering
from a non-polar target with the polar case. When D
vanishes, [ is zero and we get

K(R) xi(R - R,) (11)

that is, the pole moves linearly along the imaginary k-
axis as R passes through R,. For a weakly polar target,
I(R) ~ —2D?*/3 and we have, for small D,

K(R) < i(R = R/ *8) x~i(R - R,)'"*5. (12)

There is now a branch point at R = R,; if D is irra-
tional, there are infinitely many branches. We will put
the branch line along the negative imaginary axis.

For R > R,, k is positive imaginary, corresponding to
a bound state. As R decreases through R,, k becomes
complex. We will consider its trajectory on what Herzen-
berg [13] calls ‘the first counterclockwise sheet’, that is,
measuring the phase of k counterclockwise from the pos-
itive real axis. From Eq. (12), we get

K(R) o (R, — R e+ R< R, (13)
The phase of k is greater than 37/2, ie., it is on the fourth
quadrant of the second Riemann sheet, a direct conse-
quence of the attractive nature of the effective potential.
There is a mirror-image pole in the third quadrant with a
phase angle of —7(1/2+4D?/3), as well as mirror-image
pairs on higher Riemann sheets. These we ignore.

We show the trajectory of a bound state in Fig. 1 for
a case where the dipole strength decreases monotonically
with R. The decreasing dipole strength causes the tra-
jectory to bend back toward the imaginary k-axis after
it passes through the origin.

With the effective electron momentum defined by Eq.
(9), we construct the negative ion potential curve as

= Vneutrﬂl (R) + 1I((‘R)Q (14)

Vion(R) ;

By construction, Vj,,, crosses V,cutrar at R, and acquires
a negative imaginary part for R < R,. For R > R,,, Vion
is real and can be calculated by ab initio techniques. For
our pruposes, it is presumed to be known. The single
parameter 3 in Eq. (9) is chosen so that we get a smooth
connection between the inner and outer portions of the
ion curve.

The behavior of V,,, differs markedly from what is seen
in the case of a shape resonance. In the extreme case of
a pure virtual state that can exist in the absence of a
dipole moment, the trajectory of K (R) would follow the
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FIG. 1: Trajectory of a pole of the S-matrix in the com-
plex K-plane for the dipole potential problem discussed in
text. We used a dipole moment function appropriate for HCL
The circles correspond to internuclear distance values of 1.25,
1.92276, 2.5, 3.07724, 3.75 and 4.42276 bohr.

simple parametrisation K (R) = i(R— R,), changing sign
as R passes through R,. But $K(R)> = —1(R — Ry)*
is always real and negative, independent of the sign of
(R — Rp). This means that for a pure virtual state,
the V;,, curve is real and lies below Vj,cutrar €xcept at
the point R, where they touch. The introduction of a
weak dipole moment does not dramatically alter this pic-
ture: K (R) will move off the imaginary axis as it passes
through the origin and V;,,, will acquire a negative imagi-
nary component. But for a weak dipole moment, the real
part of Vj,, will generally fall below the Vj,eytrar potential
curve.

We are now in a position to derive the nuclear wave
equation of our dynamical model.

III. NUCLEAR DYNAMICS IN THE
EFFECTIVE-RANGE MODEL

The basic idea behind the effective-range model is that
for very low-energy scattering the wave function which
describes the scattered electron is independent of energy
inside some radius r, [28]. Inside r,, the potential is
strong and the electron follows the nuclei adiabatically.
The logarithmic derivative of wave function at r = r,,

1 9Y(r;R)

F(R) = (w(r;R) or

Jr=r, (15)

is introduced to avoid calculations in the inner region.
The log-derivative depends on the internuclear geometry,
but is assumed to be independent of the collision energy,
on the assumption that the latter is small compared to
the internal potential.

Using S-matrix boundary conditions, the wave func-
tion in the outer region r > r, is replaced by the asymp-

totic form corresponding to the lowest angular mode of
the fixed dipole problem:

W(r;R) = hy (kor)xo(R) + D Auhyf (kur)xa(R), (16)

where x,(R) is a target vibrational function with energy
E,, k, = \/2(E — E,) is the electron channel momen-
tum and h*() is an outgoing(incoming) Hankel function.
Note that only the A, associated with real (open) k,
contribute to the cross sections. These in turn are deter-
mined by matching the log-derivative of ¢ at r,. The log-
derivative f(R) is generally treated as a semi-empirical
parameter, but with the information of the previous sec-
tion, it can be determined.

We assume that the wave function in the inner region
can be equated with the adiabatic Siegert state associ-
ated with Vj,,, which is a purely outgoing wave at large
T

lim ¢(r;R) ~exp (iK(R)r — l(R)7/2), (17)

=00

where K(R) is defined by the relative spacing between
neutral and the anion surface (Eq. (14)):

K(R) = \/2(‘/;071(1?) - Vneutral (R)) (18)

It follows that f(R) = iK(R).
Matching the logarithmic derivatives of (17) and (16)
at r = r, leads to

7K(R) — kohr (korO)lXO (R) + Zn knAnhf(knro)IX’ﬂ(R)
hy (koro)xo(R) + 3, Anh,f(knro)xn(R)
(19)
We further reorganize the matching equation using the
fact that x, is a vibrational state of the neutral Hamil-
tonian Hneutrn,l

V 2(E - En)¢n(R)

= \/2(E - Hneutrul (R))Xn(R) (20)

knXn(R)

and replace each appearance of k, with the operator
\/Q(E — Hyeutrar(R)). The matching equation now be-
comes

iK(R) [hy (koro)xo(R) + 32, Anhi (kuro)xn(R)] =
2(E - Hneutral)[h; (kOTO)IXO (R)
+ 3, Anhy (knro) X (R)] (21)

Eq. (21) can be further simplified if we assume 7,
can be chosen large enough so that the Hankel functions
can be replaced by their asymptotic forms, hf/f(kr) ~
exp(+/ — ikr — lm/2). With this assumption Eq. (21),
after rearrangement, becomes



(_K(R) + 2(E - Hneutrul)) Z Anei(k"+k0)roxn(R) = (K(R) + ko) Xo(R) (22)

Note that the factors e!(ko+k)7 can be incorporated into
a redefinition of the coefficients A,, without changing the
ezcitation cross sections, which are proportional to |A4,|2.
So the matching equation is now independent of r,, as in
the zero-range potential model [28].

Eq. (22) can be converted to a set of linear equations
for the unknown coefficients A,, by multiplying from the
left with x, and integrating over R. This is the proce-
dure used in refs. [2] and [3]. There can, however, be
convergence problems with such a linear system [28]. In
many cases, the negative ion curve is very different from
the neutral curve and may even be dissociative, in which
case the expansion in vibrational states of the neutral
may not converge.

Eq. (22) can be solved without an expansion in target

vibrational states. If we define the nuclear wave function,
U(R) as

U(R) =) Apeibntholrey, (R) (23)

we obtain the inhomogeneous differential equation:

(—K(R) +2(E - Hneutml)) U(R) =
(K(R) + ko) xo(R) (24)

Eq. (24) can easily be solved in ways that avoid the
convergence problems associated with an expansion in
target vibrational states.

To solve Eq. (24), we must specify appropriate bound-
ary conditions. For that purpose, it is useful to recast
Eq. (24) into the form of a driven Schrédinger equation.
If we define

(R) = (K(R) + /2(E — Hyeorrat) ) AR),  (25)

we can then write Eq. (24) as

(_K(R) + 2(E - Hneutrul)) (K(R) + 2(E - Hneutrﬂl)) Q(R) = (K(R) + kO) XO(R) (26)

or, using Eq.(14), as

(2(E — Hipp) + [ 2(E — Hyeutral), K(R)D QR) =
(K(R) + ko) xo(R) (27)

As R — oo, K(R) goes to a constant and the commutator
in Eq. (27) vanishes, giving:

(E = Hion)UR)

o=

(K(R) + ko) xo(R), R — o0o(28)

It is clear from Eq. (28) that Q(R) is effectively
the wave function that describes the temporary molec-
ular state that moves asymptotically on the negative ion
curve. For total energies F below the dissociative attach-
ment threshold, Q(R) will go to zero as R — oo, while
above the dissociation threshold, the appropriate bound-
ary condition for Q(R) is that it behave asymptotically
as a purely outgoing wave. Having solved the nuclear
wave equation (NWE), Eq. (27), the excitation ampli-

tudes are then evaluated by projecting the solution onto

a target vibrational state:

An

/ X (R)¥(R)dR

/ xn(R)(K(R) + k)RR (29)

If we drop the commutator in Eq. (27) entirely, on
the assumption, in the sprit of the Born-Oppenheimer
approximation, that the nuclear kinetic energy operator
commutes with the logarithmic derivative defined in Eq.
(15), then we need only to deal with an inhomogeneous
Schrédinger equation (BO-NWE), Eq. (28), at all R. In
the case of a polar target, however, the behavior of K (R)
as it passes through the origin (Fig. 1) invalidates this
approximation. Consequently, as we will see below, the
NWE and BO-NWE can give very different results close

to vibrational thresholds.

IV. APPLICATION TO HCL

We have applied the previously outlined theory to the
case of e~ — HCI vibrational excitation. The parameters
required for the nuclear wave equation were obtained as
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FIG. 2: Neutral and anion potential curves for HCl. Solid
curve: neutral ground state with lowest three vibrational lev-
els indicated; dashed curves: real and imaginary parts of an-
ion curve.

follows. For the bound portion of the HCl~ potential
curve, we used the ab initio configuration-interaction cal-
culations of Astrand and Karlstrom [29]. Their calcula-
tions give a 2% HC1~ curve that has a shallow outer-well
centered at 4 bohr and crosses the neutral HCI ground
state curve near 2.5 bohr. For the ground-state HCI
curve, we used a Morse potential with parameters taken
from the work of Cizek, Horacek and Domcke [30]. The
analytic continuation of the HCI™ curve was carried out
using the dipole coupled partial-wave model outlined in
Sec. II. This procedure requires the R-dependent dipole
moment of the neutral target. This data was taken from
the ab initio calculations of ONeil, Rosmus, Norcross and
Werner [31]. We used a value of 2.54 bohr for the cross-
ing point, R,. Finally, we chose =04 in Eq. (9) to
smoothly connect the real and complex portions of the
anion curve. The potential curves for HCL and HCI™ we
used are depicted in Fig. 2.

The ion curve is obtained by adding 3K (R)? to the
neutral HCI potential (Eq. (14)). For R > R,, K(R)
is positive imaginary; Vj,, is purely real and lies below
Vieutral, corresponding to an electronically bound state.
For R < R,, K(R) lies in the fourth quadrant of the
complex plane and Vj,, is complex. Since K(R) stays
relatively close to the negative imaginary axis, the real
part of Vj,, stays below Vieutrar-

To solve the NWE (Eq. 27) and BO-NWE (Eq. 28)
equations, we used a discrete variable representation
(DVR) of the operators Hpeytrai(R) and K(R) based
on Lobatto shape functions [32]. The DVR provides di-
agonal representation of any local operator (K (R) and
Vieutral(R), in this case), while the matrix elements
of the derivative operators needed to express the nu-
clear kinetic energy are given by simple analytic ex-
pressions [32]. For calculations at energies above the
threshold for dissociative attachment, we need to im-
pose outgoing-wave boundary conditions in solving the
NWE and BO-NWE equations. This is easily accom-
plished within the DVR [33] by mapping the internuclear
coordinate with an exterior complex scaling transforma-

tion:
R R < Ry,
R— M(R) = . 30
(&) {Ro—l—(R—Rg)e’” R > Ry, (30)
where Ry is lies outside the interaction region. Exte-

rior complex scaling automatically imposes the outgoing
wave boundary condition [33]. The NWE and BO-NWE
are then replaced by a set of complex linear equations.
For the NWE, we need a representation of the operator
\/2(E — Hyeutrar). This is accomplished by diagonaliz-
ing Heutrar in the DVR basis and expressing the opera-
tor as:

V2(E = Hpeutral) = Zui(R)mui(R’) (31)

where E; and u; are the eigenvalues and eigenvectors of
H,cutrar in the finite DVR basis. 200 DVR functions
on a 20 bohr interval with Ry =13 bohr were found to
give converged results. The excitation coefficients, given
by Eq. (29), were also obtained using Gauss-Lobatto
quadrature with a DVR representation of the target vi-
brational states. The vibrational excitation cross sections
are expressed in terms of the excitation coefficients by the
formula

T k
n=—=—|A, 32
UO k§k0| ‘ ( )

In Fig. 3, we plot the 0 — 1 and 0 — 2 cross sections
obtained from the NWE and BO-NWE models. The
most significant differences between the two models are
evident in the immediate vicinity of the n =1 and n = 2
vibrational thresholds, where the NWE produces sharper
threshold structures. The threshold regions were found
to be quite sensitive to the detailed behavior of K(R)
in the crossing region. Unfortunately, the calculations of
Astrand and Karlstrom [29], which we used in the con-
struction of the anion curve, give only three points in the
vicinity of the crossing, making it difficult to determine
precise values for both 5 and R,. Small changes in R, al-
ter the magnitude and shape of the threshold peaks, but
this sensitivity is greatly reduced as soon as the collision
energy is a few tenths of an eV above a vibrational thresh-
old, where the NWE and BO-NWE models give similar
results. The oscillatory structures between .7 and .8 eV
are associated with quasibound levels supported by the
outer well in the HCL™ curve (cf Fig 2).

The results computed with the NWE and BO-NWE
models are compared with the experiment in Fig. 4. For
the 0 — 1 cross section, we show the experimental values
of Schafer and Allan [34] from threshold to .5 eV; for
collision energies above .5 eV, we use the more recent
high resolution data of Allan et al. [19]. The 0 — 2 data
is taken from Schafer and Allan and does not have the
resolution needed to display the outer well structures.
To facilitate the comparison with theory, the numerical
results were convoluted with a Gaussian of 20 meV width.
The experimental results were all reported in arbitatry
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FIG. 3: Vibrational excitation cross sections for HCl com-
puted with NWE and BO-NWE models. Solid curves: NWE;
dashed curves: BO-NWE. Top panel: 0 — 1 cross section;
bottom panel: 0 — 2 cross section.

units and were hence normalized to the theoretical values.
As previously mentioned, the calculations are extremely
sensitive to details of the anion potential curve in the
vicinity of its crossing with the neutral and the ab initio
data from which our models were constructed leaves some
uncertainty about this region. Nevertheless, it is clear
that the model calculations capture the essential features
of the observed excitation cross sections.

V. DISCUSSION

We have formulated a model for low-energy electron-
molecule scattering that can be used in situations where
the collision dynamics is effected by the presence of a
virtual state. The formulation is based on a zero-range
model that approximates the electron-molecule interac-
tion by a matching condition that is independent of en-
ergy but changes with target nuclear geometry.

The zero-range model was originally presented as an
infinite set of linear equations with parameters that were
adjusted to fit experimental observations. Our reformu-
lation of the zero-range model has achieved two principal
goals. The first is to obviate the need for a semi-empirical
determination of the model parameters by deriving an
approximation to the complete anion potential curve us-
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FIG. 4: Vibrational excitation cross sections for HCl. Com-
parison of NWE and BO-NWE model results with experi-
ment. Solid curves: NWE; dashed curves: BO-NWE; dotted
curves: experimental results (see text for explanation). Top
panel: 0 — 1 cross section; bottom panel: 0 — 2 cross section.

ing properties of electron-dipole scattering. The advan-
tage of such an approach is that ab initio input can be
provided by standard quantum chemistry tools since we
only require information on neutral and anion potential
curves for configurations where they are electronically
bound. We also need the dipole moment of the neutral
as a function of nuclear geometry. In particular, fixed-
nuclei electron-molecule scattering calculations are not
required to determine the model parameters.

The second feature of the reformulated zero-range
model is that the infinite system of linear equations can
be recast in the form of an inhomogeneous differential
equation or nuclear wave equation. This obviates the
need for an expansion in target vibrational states, which
can diverge at energies above the threshold for dissocia-
tive attachment. More importantly, it provides a viable
path to extending the treatment to polyatomic targets.

To illustrate the method, we have revisited the prob-
lem of vibrational excitation of HCI by electron impact
and showed, for the first time, that a simple zero-range
model predicts the oscillating structures in the cross sec-
tions. These oscillations originate from the shallow outer
well in the HC1™ potential curve and have been predicted
by the projection operator theory and confirmed experi-



mentally. While our calculations reproduce essential fea-
tures of the observed excitation cross sections, the corre-
spondence with experimental data is not perfect. This is
caused by uncertainties in the available ab initio data we
used as input and the inability to treat the p-wave shape
resonance in our model, which is known to play an im-
portant role at higher energies. Indeed, a disadvantage
of the current formulation is its limitation to low energy
s-wave scattering. There are any interesting problems in
electron-molecule scattering where the cross sections dis-
play both low-energy virtual state effects and the effects
of shape resonances at higher energies and the currrent
approach is not able to deal with these situations in a
unified way.

The present formulation of the zero-range model can

be extended to small polyatomic targets with modest
computational effort and calculations on the e~ — COy
system are currently underway.
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