
Sattering of slow eletrons by polar moleules: Appliation of e�etive-rangepotential theory to HClWim Vanroose,� C. W. MCurdy,y and T. N. ResignozComputing Sienes, Lawrene Berkeley National Laboratory, One Cylotron Road, Berkeley, CA 94720(Dated: September 11, 2003)We present a non-empirial potential model for studying threshold vibrational exitation of polarmoleules by eletron impat. This work builds on the zero-range potential virtual state model ofGauyaq and Herzenberg (J. P. Gauyaq and A. Herzenberg, Phys. Rev. A 25, 2959 (1982)), usingknown analyti properties of the S-matrix for a dipole potential to predit the analyti ontinuationof the negative ion potential urve into the ontinuum. We derive an equation that determines thenulear dynamis whih an be solved without the need for an expansion in target vibrational states.The model is applied to e� �HCl and is found to apture the essential features of the observedexitation ross setions, inluding both the threshold peaks as well as osillatory strutures atenergies above threshold.PACS numbers: 34.80.GsI. INTRODUCTIONVibrational exitation of the hydrogen halides by lowenergy eletron impat has ontinued to attrat the at-tention of experimentalists and theorists for many years.Of partiular interest are the pronouned threshold peaksin the vibrationally inelasti ross setions whih were�rst observed by Rohr and Linder some twenty-�ve yearsago [1℄. These early observations prompted onsiderabledebate about mehanisms that might be responsible forthe observed strutures and a variety of di�erent expla-nations were put forth.Two models were initially proposed to explain the ob-served threshold peaks. Dub�e and Herzenberg [2℄ andGauyaq and Herzenberg [3℄ argued that shape reso-nanes ould not be involved sine the observed angu-lar distributions at threshold were isotropi, suggestinga strong s-wave omponent (the eletron ollision ener-gies are less than 1 eV), whih in turn argued againsta resonant trapping mehanism. The zero-range poten-tial model they developed assumed the problem involvesonly s-wave sattering. A virtual state mehanism wasproposed to aount for the enhanement of the wavefuntion of a slow exiting eletron. When vibrational mo-tion was introdued into the �xed-nulei piture, nulear-exited Feshbah resonanes appeared below the vibra-tional thresholds and, in their view, were responsible forthe observed strutures.A di�erent model, based on a non-loal projetion oper-ator theory, was proposed by Domke and Cederbaum [4℄.Their treatment rests on the piture of a disrete state in-terating with a ontinuum and makes use of a projetionoperator resonane formalism [5℄ that provides a formallyexat desription of the nulear motion with non-loal�wivanroose�lbl.govywmurdy�lbl.govztnresigno�lbl.gov

omplex potentials. In their treatment, the threshold be-havior of the ross setions is a onsequene of the strongoupling between a disrete resonane and a bakgrounddipole ontinuum that mixes s- and p-waves. The zero-range potential model and the non-loal projetion oper-ator theory were both parametrized to give a suessfulaounting of the observed threshold peaks.The early models were eventually followed by a se-ries of ab initio alulations, most notably non-adiabatiR-matrix alulations [6℄ that inluded expliit ouplingbetween eletroni and nulear degrees of freedom, fore� �HF [7℄, e� �HCl [8℄ and e� �HBr [9℄ sattering.These alulations were suessful in aounting for thequalitative behavior of the observed ross setions. More-over, the R-matrix results, and subsequent theoretialanalyses [10, 11℄ of their assoiated analyti struture,gave a piture of the dynamis that was onsistent witha nulear-exited Feshbah resonane mehanism.What all of these approahes have shown is that thesimple piture of a resonane, whih lies lose to the realenergy axis for ompressed nulear geometries and adi-abatially evolves into an eletronially bound negativeion as the internulear distane inreases, is drastiallymodi�ed in the ase of a polar moleule. Fandreyer andBurke's [9℄ analysis of the e� �HBr S-matrix revealedthat there was a shape resonane, but the trajetory ittraed when the internulear distane was varied was dis-onneted from that of bound HBr�. As the moleuleis strethed from its equilibrium value, the resonane isturned away from the real axis, moves o� into the lowerhalf of the omplex momentum (k) plane and never be-omes a bound state.A bound anion state does appear for larger internu-lear distanes, but its behavior as the internuear dis-tane is dereased is profoundly a�eted by the underly-ing eletron-dipole interation [12℄. A polar moleularanion annot have a true \virtual state", that is, a statewith a purely imaginary k-value in the lower half plane,lose to the real axis. If we trak the pole position of abound diatomi anion as the internulear separation is



2dereased, then for some ritial distane Ro the bind-ing energy will go to zero. If the distane is further de-reased, then the pole passes through k=0 into the lowerhalf of the omplex momentum plane. For a nonpolarsystem, this trajetory would be one that moves straightdown the negative imaginary k-axis. But for a polar sys-tem, there is a branh ut along this axis and the polesplits into mirror-image pairs on higher Riemann sheetsas it passes through the origin [13℄. The 'virtual state'trajetrory thus possesses a disontinuous slope or 'kink'as it passes through the origin; the angles at whih themirror-image virtual state poles emerge from the originare uniquely determined by the value of the dipole mo-ment at R[12, 13℄. The fat that the bound-state andresonane trajetories do not onnet is a diret onse-quene of the dipole �eld that strongly mixes the s andp-wave ontinua and is an example of generalized levelrepulsion in the ontinuum [14{17℄. This analyti stru-ture was also predited by Domke [18℄ and on�rmed byFandreyer and Burke's alulations [11℄.The non-loal resonane model has been extensivelyre�ned over the past two deades and has been very su-essful in reproduing details of the experimentally mea-sured e� �HX ross setions [19, 20℄. In the ase ofHCl [19℄, for example, it reprodues both the thresholdpeaks and the higher energy struture aused by an outerwell in the bound portion of the HCl� potential energyurve. This level of agreement would seem to indiatethat the low-energy ollision dynamis between eletronsand weakly polar diatomi moleules is ompletely un-derstood. So what motivation, one may ask, is there forrevisiting this problem?Our primary objetive here is the formulation of anab initio model whih aptures the essential features ofthe observed ross setions at low energies, does not re-quire an elaborate parametrization in its exeution andis appliable to more ompliated systems. This in turnhas prompted us to reexamine the zero-range potentialmodel. Like Gauyaq and Herzenberg [3℄, we use e�etiverange theory as the starting point for deriving an equa-tion that determines the nulear dynamis. What we endwith is a model whih, struturally at least, resemblesthe loal omplex potential or \Boomerang" model [21℄whih has proven to be a very useful tool in desribingresonant vibrational exitation, ie. a omplex, inhomo-geneous wave equation whih determines the low-energyollision ross setions. Furthermore, the equation an besolved without resorting to an expansion in target vibra-tional states. Another new element in our formulation isthe use of a dipole oupled partial-wave model to preditthe analyti ontinuation of the negative ion potentialurve into the ontinuum, whih allows one to build anon-empirial model whose only input is the potentialurve of the anion in the region where it is bound, thepotential urve of the target and its R-dependent dipolemoment.Like the boomerang model, whih has reently beenextended to look at resonant nulear motion in several

dimensions [22, 23℄, our e�etive-range model an beextended to polyatomis, with only modest omputa-tional requirements, provided a suitable anion poten-tial surfae an be onstruted. Interesting thresholdstrutures have, in fat, been observed in the vibrationalexitation ross setions of polyatomi targets, suh asCO2 [24℄ and CS2 [25℄, whih are non-polar in their equi-librium geometry, but aquire a transient dipole momentupon bending. While our initial appliations here arefoused on e� �HCl, the appliation of this model topolyatomi targets has provided additional motivationfor the present development.The outline of this paper is as follows. The theory ispresented in the following two setions. In Setion II,we disuss the proedure we use to onstrut the adia-bati potential urve for the negative ion and its analytiontinuation into the omplex momentum plane. Thederivation of the e�etive-range model is then outlinedin Setion III. Our results for e� �HCl vibrational ex-itation are presented in Setion IV. Setion V ontainssome onluding remarks.II. POTENTIAL CURVE OF THE NEGATIVEIONThe prinipal assumption of the e�etive-rangemodel, for very low-energy eletron sattering by polarmoleules, is that the target provides the eletron witha potential well that is on the verge of binding an extraeletron. Thus small displaements of the nulei abouttheir equilibrium position an ause this bound state toappear or vanish. To desribe this dynamis, we mustbe able to onstrut an adiabati potential urve for themoleular anion. This is not a problem for nulear ge-ometries where the anion is eletronially bound: onean perform ab initio struture alulations for the boundportion of the potential urve. For the unbound portionof the urve, we rely on an analysis of the long-range partof the eletron-moleule interation, whih is dominatedby the dipole �eld.The binding properties of a �xed dipole potentialare well known and have been studied by a numberof authors. Here, we follow the treatment of L�evy-Leblond [26℄. The Shr�odinger equation for an eletronin a dipole �eld is given by:��12�+ eD(R) � rr3 �E� (r; �; � ;R) = 0; (1)where D is the dipole moment and depends on the inter-nulear separation, R. Eq. (1) is separable in spherialpolar oorodinates. Choosing the z-axis to oinide withthe dipole moment, D, and writing (r; �; � ;R) = 1rP (r)�(�)eim�; (2)gives the following equations for the radial and angular



3parts of the wave funtion:�� d2dr2 + ln(ln + 1)r2 � 2E�P (r) = 0 (3)and � 1sin � dd� �sin � dd��� m2sin2 � � 2D os �+ln(ln + 1)��n(�) = 0 (4)where ln(ln + 1) is a sparation onstant and m is aninteger. The separation onstant is written in the formof an e�etive angular momentum, ln, and is obtained bysolving for the eigenvalues of the angular equation, Eq.(4). We need only onsider the lowest eigenvalue (l0)for the m = 0 ase sine this is the only angular modethat gives rise to an attrative entrifugal potential inEq.(3) [2℄. L�evy-Leblond [26℄ onsidered this problemand derived a power series for the solution:l0(R)(l0(R) + 1) = �2D(R)23 + 1130 �2D(R)23 �2�133450 �2D(R)23 �3 + ::: (5)For a subritial dipole moment (D < :639eao), the en-trifugal term l0 will be a non-integral negative numberbetween � 12 and zero. We will heneforth drop the sub-sript 0 on l with the understanding that it refers to thesolution of Eq. (5).A non-integral l-value in the radial equation leads to amulti-valued Jost funtion, Fl(K) [13, 27℄. Indeed, loseto the origin, the Jost funtion for ontinuous angularmomentum [12℄ redues to a series that has terms thathave non-integer exponentsFl(K ;R) = a0(R) + a1(R)K2 + � � �+b1(R)K2l+1 + b2(R)K2l+3 + � � � ; (6)where K is the momentum of the eletroni state relativeto the threshold. A zero of the Jost funtion Fl(K ;R)orresponds to a pole of the S-matrix. For a bound state,the zero lies on the positive imaginaryK-axis. Its behav-ior near threshold (K = 0) depends ritially on l, whihin turn depends on the dipole moment through Eq. (5).Sine l is negative for the ase of a subritial dipole, theK2l+1 term dominates the K2 term in Eq. (6), so loseto the threshold, the most important terms of the Jostfuntion areFl(K ;R) ' a0(R) + b1(R)K2l+1: (7)Let Ro denote the nulear oordinate at whih the ele-tron beomes unbound, ie. K(Ro) = 0, and expand theoeÆients a0(R) and b1(R) about that point. We �ndthat the ondition for a zero of the Jost funtion nearthreshold is0 = a0(Ro)0(R�Ro) + b1(Ro)K2l+1 (8)

or K(R) = i�(R �Ro)1=(2l(R)+1); (9)where we have de�nedi� � (�a0(Ro)0=b1(Ro))1=(2l(R)+1) (10)We an now ontrast the ase of pure s-wave satteringfrom a non-polar target with the polar ase. When Dvanishes, l is zero and we getK(R) / i(R�Ro); (11)that is, the pole moves linearly along the imaginary k-axis as R passes through Ro. For a weakly polar target,l(R) ' �2D2=3 and we have, for small D,K(R) / i(R�Ro)1=(1� 4D23 ) � i(R�Ro)1+ 4D23 : (12)There is now a branh point at R = Ro; if D is irra-tional, there are in�nitely many branhes. We will putthe branh line along the negative imaginary axis.For R > Ro, k is positive imaginary, orresponding toa bound state. As R dereases through Ro, k beomesomplex. We will onsider its trajetory on what Herzen-berg [13℄ alls `the �rst ounterlokwise sheet', that is,measuring the phase of k ounterlokwise from the pos-itive real axis. From Eq. (12), we getK(R) / (Ro �R)1+ 4D23 ei�( 32+ 4D23 ); R < Ro (13)The phase of k is greater than 3�=2, ie., it is on the fourthquadrant of the seond Riemann sheet, a diret onse-quene of the attrative nature of the e�etive potential.There is a mirror-image pole in the third quadrant with aphase angle of ��(1=2+4D2=3), as well as mirror-imagepairs on higher Riemann sheets. These we ignore.We show the trajetory of a bound state in Fig. 1 fora ase where the dipole strength dereases monotoniallywith R. The dereasing dipole strength auses the tra-jetory to bend bak toward the imaginary k-axis afterit passes through the origin.With the e�etive eletron momentum de�ned by Eq.(9), we onstrut the negative ion potential urve asVion(R) = Vneutral(R) + 12K(R)2: (14)By onstrution, Vion rosses Vneutral at Ro and aquiresa negative imaginary part for R < Ro. For R > Ro, Vionis real and an be alulated by ab initio tehniques. Forour pruposes, it is presumed to be known. The singleparameter � in Eq. (9) is hosen so that we get a smoothonnetion between the inner and outer portions of theion urve.The behavior of Vion di�ers markedly from what is seenin the ase of a shape resonane. In the extreme ase ofa pure virtual state that an exist in the absene of adipole moment, the trajetory of K(R) would follow the
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FIG. 1: Trajetory of a pole of the S-matrix in the om-plex K-plane for the dipole potential problem disussed intext. We used a dipole moment funtion appropriate for HCl.The irles orrespond to internulear distane values of 1.25,1.92276, 2.5, 3.07724, 3.75 and 4.42276 bohr.simple parametrisationK(R) = i(R�Ro), hanging signas R passes through Ro. But 12K(R)2 = � 12 (R � R0)2is always real and negative, independent of the sign of(R � R0). This means that for a pure virtual state,the Vion urve is real and lies below Vneutral exept atthe point Ro where they touh. The introdution of aweak dipole moment does not dramatially alter this pi-ture: K(R) will move o� the imaginary axis as it passesthrough the origin and Vion will aquire a negative imagi-nary omponent. But for a weak dipole moment, the realpart of Vion will generally fall below the Vneutral potentialurve.We are now in a position to derive the nulear waveequation of our dynamial model.III. NUCLEAR DYNAMICS IN THEEFFECTIVE-RANGE MODELThe basi idea behind the e�etive-range model is thatfor very low-energy sattering the wave funtion whihdesribes the sattered eletron is independent of energyinside some radius ro [28℄. Inside ro, the potential isstrong and the eletron follows the nulei adiabatially.The logarithmi derivative of wave funtion at r = ro,f(R) = ( 1 (r ;R) � (r ;R)�r )r=ro (15)is introdued to avoid alulations in the inner region.The log-derivative depends on the internulear geometry,but is assumed to be independent of the ollision energy,on the assumption that the latter is small ompared tothe internal potential.Using S-matrix boundary onditions, the wave fun-tion in the outer region r > ro is replaed by the asymp-

toti form orresponding to the lowest angular mode ofthe �xed dipole problem: (r ;R) = h�l (k0r)�0(R) +Xn Anh+l (knr)�n(R); (16)where �n(R) is a target vibrational funtion with energyEn, kn = p2(E �En) is the eletron hannel momen-tum and h+(�) is an outgoing(inoming) Hankel funtion.Note that only the An assoiated with real (open) knontribute to the ross setions. These in turn are deter-mined by mathing the log-derivative of  at ro. The log-derivative f(R) is generally treated as a semi-empirialparameter, but with the information of the previous se-tion, it an be determined.We assume that the wave funtion in the inner regionan be equated with the adiabati Siegert state assoi-ated with Vion, whih is a purely outgoing wave at larger: limr!1 (r ;R) � exp (iK(R)r � l(R)�=2) ; (17)where K(R) is de�ned by the relative spaing betweenneutral and the anion surfae (Eq. (14)):K(R) =p2(Vion(R)� Vneutral(R)): (18)It follows that f(R) = iK(R).Mathing the logarithmi derivatives of (17) and (16)at r = ro leads toiK(R) = k0h�l (k0ro)0�0(R) +Pn knAnh+l (knro)0�n(R)h�l (k0ro)�0(R) +PnAnh+l (knro)�n(R)(19)We further reorganize the mathing equation using thefat that �n is a vibrational state of the neutral Hamil-tonian Hneutralkn�n(R) = p2(E �En)�n(R)= p2(E �Hneutral(R))�n(R) (20)and replae eah appearane of kn with the operatorp2(E �Hneutral(R)). The mathing equation now be-omesiK(R) [h�l (k0ro)�0(R) +PnAnh+l (knro)�n(R)℄ =p2(E �Hneutral)[h�l (k0ro)0�0(R)+PnAnh+l (knro)0�n(R)℄ (21)Eq. (21) an be further simpli�ed if we assume roan be hosen large enough so that the Hankel funtionsan be replaed by their asymptoti forms, h+=�l (kr) �exp(+= � ikr � l�=2). With this assumption Eq. (21),after rearrangement, beomes



5��K(R) +p2(E �Hneutral)�Xn Anei(kn+k0)ro�n(R) = (K(R) + k0)�0(R) (22)Note that the fators ei(k0+kn)ro an be inorporated intoa rede�nition of the oeÆients An without hanging theexitation ross setions, whih are proportional to jAnj2.So the mathing equation is now independent of ro, as inthe zero-range potential model [28℄.Eq. (22) an be onverted to a set of linear equationsfor the unknown oeÆients An by multiplying from theleft with �n and integrating over R. This is the proe-dure used in refs. [2℄ and [3℄. There an, however, beonvergene problems with suh a linear system [28℄. Inmany ases, the negative ion urve is very di�erent fromthe neutral urve and may even be dissoiative, in whihase the expansion in vibrational states of the neutralmay not onverge.Eq. (22) an be solved without an expansion in targetvibrational states. If we de�ne the nulear wave funtion,	(R) as 	(R) =Xn Anei(kn+k0)ro�n(R) (23)

we obtain the inhomogeneous di�erential equation:��K(R) +p2(E �Hneutral)�	(R) =(K(R) + k0)�0(R) (24)Eq. (24) an easily be solved in ways that avoid theonvergene problems assoiated with an expansion intarget vibrational states.To solve Eq. (24), we must speify appropriate bound-ary onditions. For that purpose, it is useful to reastEq. (24) into the form of a driven Shr�odinger equation.If we de�ne	(R) = �K(R) +p2(E �Hneutral)�
(R); (25)we an then write Eq. (24) as��K(R) +p2(E �Hneutral)��K(R) +p2(E �Hneutral)�
(R) = (K(R) + k0)�0(R) (26)or, using Eq.(14), as�2(E �Hion) + hp2(E �Hneutral);K(R)i�
(R) =(K(R) + k0)�0(R) (27)As R!1,K(R) goes to a onstant and the ommutatorin Eq. (27) vanishes, giving:(E �Hion)
(R) =12 (K(R) + k0)�0(R); R!1(28)It is lear from Eq. (28) that 
(R) is e�etivelythe wave funtion that desribes the temporary mole-ular state that moves asymptotially on the negative ionurve. For total energies E below the dissoiative attah-ment threshold, 
(R) will go to zero as R ! 1, whileabove the dissoiation threshold, the appropriate bound-ary ondition for 
(R) is that it behave asymptotiallyas a purely outgoing wave. Having solved the nulearwave equation (NWE), Eq. (27), the exitation ampli-tudes are then evaluated by projeting the solution onto

a target vibrational state:An = Z �n(R)	(R)dR= Z �n(R)(K(R) + kn)
(R)dR (29)If we drop the ommutator in Eq. (27) entirely, onthe assumption, in the sprit of the Born-Oppenheimerapproximation, that the nulear kineti energy operatorommutes with the logarithmi derivative de�ned in Eq.(15), then we need only to deal with an inhomogeneousShr�odinger equation (BO-NWE), Eq. (28), at all R. Inthe ase of a polar target, however, the behavior of K(R)as it passes through the origin (Fig. 1) invalidates thisapproximation. Consequently, as we will see below, theNWE and BO-NWE an give very di�erent results loseto vibrational thresholds.IV. APPLICATION TO HCLWe have applied the previously outlined theory to thease of e� �HCl vibrational exitation. The parametersrequired for the nulear wave equation were obtained as
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PSfrag replaements Width(au) Energy(au)Internulear distane (au)FIG. 2: Neutral and anion potential urves for HCl. Solidurve: neutral ground state with lowest three vibrational lev-els indiated; dashed urves: real and imaginary parts of an-ion urve.follows. For the bound portion of the HCl� potentialurve, we used the ab initio on�guration-interation al-ulations of �Astrand and Karlstrom [29℄. Their alula-tions give a 2� HCl� urve that has a shallow outer-wellentered at 4 bohr and rosses the neutral HCl groundstate urve near 2.5 bohr. For the ground-state HClurve, we used a Morse potential with parameters takenfrom the work of Cizek, Horaek and Domke [30℄. Theanalyti ontinuation of the HCl� urve was arried outusing the dipole oupled partial-wave model outlined inSe. II. This proedure requires the R-dependent dipolemoment of the neutral target. This data was taken fromthe ab initio alulations of ONeil, Rosmus, Norross andWerner [31℄. We used a value of 2.54 bohr for the ross-ing point, Ro. Finally, we hose �=0.4 in Eq. (9) tosmoothly onnet the real and omplex portions of theanion urve. The potential urves for HCL and HCl� weused are depited in Fig. 2.The ion urve is obtained by adding 12K(R)2 to theneutral HCl potential (Eq. (14)). For R > Ro, K(R)is positive imaginary; Vion is purely real and lies belowVneutral, orresponding to an eletronially bound state.For R < Ro, K(R) lies in the fourth quadrant of theomplex plane and Vion is omplex. Sine K(R) staysrelatively lose to the negative imaginary axis, the realpart of Vion stays below Vneutral.To solve the NWE (Eq. 27) and BO-NWE (Eq. 28)equations, we used a disrete variable representation(DVR) of the operators Hneutral(R) and K(R) basedon Lobatto shape funtions [32℄. The DVR provides di-agonal representation of any loal operator (K(R) andVneutral(R), in this ase), while the matrix elementsof the derivative operators needed to express the nu-lear kineti energy are given by simple analyti ex-pressions [32℄. For alulations at energies above thethreshold for dissoiative attahment, we need to im-pose outgoing-wave boundary onditions in solving theNWE and BO-NWE equations. This is easily aom-plished within the DVR [33℄ by mapping the internulearoordinate with an exterior omplex saling transforma-

tion:R!M(R) = (R R < R0;R0 + (R�R0)ei� R � R0; (30)where R0 is lies outside the interation region. Exte-rior omplex saling automatially imposes the outgoingwave boundary ondition [33℄. The NWE and BO-NWEare then replaed by a set of omplex linear equations.For the NWE, we need a representation of the operatorp2(E �Hneutral). This is aomplished by diagonaliz-ing Hneutral in the DVR basis and expressing the opera-tor as:p2(E �Hneutral) �Xi ui(R)p2(E �Ei)ui(R0) (31)where Ei and ui are the eigenvalues and eigenvetors ofHneutral in the �nite DVR basis. 200 DVR funtionson a 20 bohr interval with R0 =13 bohr were found togive onverged results. The exitation oeÆients, givenby Eq. (29), were also obtained using Gauss-Lobattoquadrature with a DVR representation of the target vi-brational states. The vibrational exitation ross setionsare expressed in terms of the exitation oeÆients by theformula �0n = �k20 knk0 jAnj2 (32)In Fig. 3, we plot the 0! 1 and 0! 2 ross setionsobtained from the NWE and BO-NWE models. Themost signi�ant di�erenes between the two models areevident in the immediate viinity of the n = 1 and n = 2vibrational thresholds, where the NWE produes sharperthreshold strutures. The threshold regions were foundto be quite sensitive to the detailed behavior of K(R)in the rossing region. Unfortunately, the alulations of�Astrand and Karlstrom [29℄, whih we used in the on-strution of the anion urve, give only three points in theviinity of the rossing, making it diÆult to determinepreise values for both � and Ro. Small hanges in Ro al-ter the magnitude and shape of the threshold peaks, butthis sensitivity is greatly redued as soon as the ollisionenergy is a few tenths of an eV above a vibrational thresh-old, where the NWE and BO-NWE models give similarresults. The osillatory strutures between .7 and .8 eVare assoiated with quasibound levels supported by theouter well in the HCL� urve (f Fig 2).The results omputed with the NWE and BO-NWEmodels are ompared with the experiment in Fig. 4. Forthe 0! 1 ross setion, we show the experimental valuesof Shafer and Allan [34℄ from threshold to .5 eV; forollision energies above .5 eV, we use the more reenthigh resolution data of Allan et al. [19℄. The 0! 2 datais taken from Shafer and Allan and does not have theresolution needed to display the outer well strutures.To failitate the omparison with theory, the numerialresults were onvoluted with a Gaussian of 20 meV width.The experimental results were all reported in arbitatry
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