Influence of Sediment Redox Conditions on Contaminant Stabilization by Apatite and FE(0)

PDF Version Also Available for Download.

Description

Efficacy of stabilizing Ce, Co, and Pb by adding apatite and zero-valent Fe (Fe(0)) to contaminated wetland sediments was quantified under oxidizing and reducing conditions. The redox status and the general water chemistry of the oxidized and reduced treatments differed greatly, yet the influences of the amendments on contaminant stabilization were quite similar; both amendments significantly (p less than or equal to 0.05) reduced aqueous contaminant concentrations. Based on resin sorption studies and thermodynamic calculations, Ce existed primarily as cationic and to a smaller extent, anionic species, and Co existed almost as cationic, neutral, and organically complexed species. Based on ... continued below

Physical Description

vp.

Creation Information

KAPLAN, D.I. May 17, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Efficacy of stabilizing Ce, Co, and Pb by adding apatite and zero-valent Fe (Fe(0)) to contaminated wetland sediments was quantified under oxidizing and reducing conditions. The redox status and the general water chemistry of the oxidized and reduced treatments differed greatly, yet the influences of the amendments on contaminant stabilization were quite similar; both amendments significantly (p less than or equal to 0.05) reduced aqueous contaminant concentrations. Based on resin sorption studies and thermodynamic calculations, Ce existed primarily as cationic and to a smaller extent, anionic species, and Co existed almost as cationic, neutral, and organically complexed species. Based on a series of varying selective extractions, almost 50 wt-percentage of the Co and Pb were already strongly bound to the sediment, thereby limiting the potential (and need) of affecting additional immobilization through the use of amendments.

Physical Description

vp.

Source

  • Journal Name: Journal of Materials in Civil Engineering

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-MS-2004-00249
  • Grant Number: AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 824424
  • Archival Resource Key: ark:/67531/metadc782409

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 17, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 5, 2016, 2:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

KAPLAN, D.I. Influence of Sediment Redox Conditions on Contaminant Stabilization by Apatite and FE(0), article, May 17, 2004; South Carolina. (digital.library.unt.edu/ark:/67531/metadc782409/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.