NABIR Assessment Element, Expanded Rapid, Comprehensive, Lipid Biomarker Analysis for Subsurface, Community Composition and Nutritional/Physiological Status as Monitors of Remediation and Detoxification Effectiveness

PDF Version Also Available for Download.

Description

NABIR funding at the University of Tennessee Center for Biomarker Analysis (CBA) has led to several key contributions to the investigation of bioremediation of metals and radionuclides. This lab has played an integral part in assessing microbial communities at the field scale at the ORNL FRC (Istok et al., 2004) and two UMTRA sites (Anderson et al., 2003, Chang et al., 2001). Our work over the period of the grant has resulted in 42-peer reviewed publications, 62 presentations (14 of which were international), and one patent pending. Currently CBA has 2 papers in press. The main objectives relating to the ... continued below

Creation Information

White, David C. September 14, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

NABIR funding at the University of Tennessee Center for Biomarker Analysis (CBA) has led to several key contributions to the investigation of bioremediation of metals and radionuclides. This lab has played an integral part in assessing microbial communities at the field scale at the ORNL FRC (Istok et al., 2004) and two UMTRA sites (Anderson et al., 2003, Chang et al., 2001). Our work over the period of the grant has resulted in 42-peer reviewed publications, 62 presentations (14 of which were international), and one patent pending. Currently CBA has 2 papers in press. The main objectives relating to the field portion of this program were to provide comprehensive biomarker analysis for NABIR collaborators to enhance the understanding of microbial geo-bioprocesses involved in the effective immobilization of metals (We have worked with and published or currently are publishing with 10 groups of NAIBR investigators). The laboratory portion of our research centered on methods development and has led to three major innovations that could result in a systematic way of evaluating sites for potential bioremediation. The first of these is the development of an in situ sampling device (Peacock et al., 2004, Anderson et al., 2003, Istok et al., 2004) for the collection and concentration of microbial biomass. The second is the development of expanded lipid analysis based on the significantly greater sensitivity and selectivity of the LC/MS/MS that allows the analysis of respiratory quinones, diglycerides, sterols, intact phospholipids, poly-hydroxyalkonates, and potentially archaeol, and caldarchaeols from archea. These new analyses are accomplished more rapidly and with increased sensitivities and resolution than in the past (Lytle et al., 2000a, 2000b, 2001a, Geyer et al., 2004). The third advance is the coupling of lipid analysis with 13C enrichment experiments (Lytle et al., 2001b, Geyer et al. 2005). With this technique it is now possible to follow the active portion of the in situ microbial community with a resolution heretofore not possible. These three advances in technology have been initially demonstrated at the NABIR Field Research Center (FRC) in Oak Ridge, TN and at the UMTRA Old Rifle site in Colorado. Microbial communities are of primary importance in the use of bioimmobilization strategies for metals and radionuclides from contaminated groundwater and sediments. These communities represent a potentially transformable agent that is able to affect virtually all biogeochemical pathways. Microorganisms can alter metal chemistry and mobility through reduction, accumulation, and immobilization and have been shown to be responsible for mineral formation and dissolution. Research is directed to provide collaborating NABIR investigators a rapid, comprehensive, and cost-effective suite of biomarker measurements to quantify microbial community structure, activity, and effectiveness, thereby providing defensible evidence that a desired bioprocess is occurring or may occur at a given site.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE ER62278
  • Grant Number: FC02-96ER62278
  • DOI: 10.2172/850194 | External Link
  • Office of Scientific & Technical Information Report Number: 850194
  • Archival Resource Key: ark:/67531/metadc782397

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 14, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 3, 2016, 4:08 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

White, David C. NABIR Assessment Element, Expanded Rapid, Comprehensive, Lipid Biomarker Analysis for Subsurface, Community Composition and Nutritional/Physiological Status as Monitors of Remediation and Detoxification Effectiveness, report, September 14, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc782397/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.