OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL

PDF Version Also Available for Download.

Description

The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing he product size distribution, so that the amount of excessively fine material produced can be minimized. This will save energy by reducing the amount of material that is ground below the target size, and will also reduce the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) ... continued below

Physical Description

9 pages

Creation Information

Kawatra, S.K. & T.C. Eisele, H.J. Walqui January 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing he product size distribution, so that the amount of excessively fine material produced can be minimized. This will save energy by reducing the amount of material that is ground below the target size, and will also reduce the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) determining whether new technologies, such as high-pressure roll crushing, can be used to alter particle breakage behavior to minimize fines production. In previous quarters, it was determined that the primary grinding mills were operating at less than full capacity, suggesting that a shift of grinding load to the primary mills could liberate more material before it reached the secondary mills, allowing more complete liberation with a coarser grind. In the eighth quarter, further analysis was carried out to determine the full extent of the benefit that could be obtained by this shift in grinding load. A key part of this analysis was the development of a correlation of the circuit capacity with (a) ore work index, (b) the quantity of primary mill ''pebbles'' that were crushed by a cone crusher in the circuit, and (c) the fraction of the crushed pebbles that were also processed by a high-pressure roll mill.

Physical Description

9 pages

Notes

OSTI as DE00828967

Source

  • Other Information: PBD: 1 Jan 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-01NT41062
  • DOI: 10.2172/828967 | External Link
  • Office of Scientific & Technical Information Report Number: 828967
  • Archival Resource Key: ark:/67531/metadc782363

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Feb. 20, 2017, 1:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kawatra, S.K. & T.C. Eisele, H.J. Walqui. OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL, report, January 1, 2003; [Houghton, Michigan]. (digital.library.unt.edu/ark:/67531/metadc782363/: accessed December 9, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.