The status of $CP$ violation and the CKM matrix is reviewed. Direct $CP$ violation in $B$ decay has been established and the measurement of $\sin 2\beta$ in $\psi K_{S}$ modes reached 5% accuracy. I discuss the implications of these, and of the possible deviations of the $CP$ asymmetries in $b \to s$ modes from that in $\psi K$. The first meaningful measurements of $\alpha$ and $\gamma$ are explained, together with their significance for constraining both the SM and new physics in $B - \bar{B}$ mixing. I also discuss implications of recent developments in the theory of nonleptonic decays for $B \to \pi K$ rates and $CP$ asymmetries, and for the polarization in charmless $B$ decays to two vector mesons.

1 Introduction

In the last few years the study of $CP$ violation and flavor physics has undergone dramatic developments. While for 35 years, until 1999, the only unambiguous measurement of $CP$ violation ($CPV$) was $\epsilon_K$, the constraints on the CKM matrix improved tremendously since the $B$ factories turned on. The error of $\sin 2\beta$ is an order of magnitude smaller now than in the first measurements few years ago [see Eq. (12)].

Flavor and $CP$ violation are excellent probes of new physics (NP), as demonstrated by the following examples:

- Absence of $K_L \to \mu\mu$ predicted charm;
- $\epsilon_K$ predicted the third generation;
- $\Delta m_K$ predicted the charm mass;
- $\Delta m_B$ predicted the heavy top mass.

From these measurements we know already that if there is NP at the TeV scale then it must have a very special flavor and $CP$ structure to satisfy the existing constraints.

The key to testing the SM is to do many overconstraining measurements. A convenient language to compare these is by putting constraints on $\rho$ and $\eta$, which occur in the Wolfenstein parameterization of the CKM matrix,

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} \lambda^2 & \frac{\lambda}{A} \\ -\lambda & 1 & \frac{1}{2} \lambda^2 \\ A \lambda^3 (1 - \rho - i\eta) & -A \lambda^2 & 1 \end{pmatrix}. $$

This form is designed to exhibit the hierarchical structure by expanding in the sine of
the Cabibbo angle, $\lambda = \sin \theta_C \simeq 0.22$, and is valid to order $\lambda^4$. The unitarity of $V_{\text{CKM}}$ implies several relations, such as

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0. \quad (2)$$

A graphical representation of this is the unitarity triangle, obtained by rescaling the best-known side to unit length (see Fig. 1). Its sides and angles can be determined in many “redundant” ways, by measuring $CP$ violating and conserving observables.

1.2 Constraints from $K$ and $D$ decays

We know from the measurement of $\epsilon_K$ that $CP$ violation in the $K$ system is at the right level, as it can be accommodated in the SM with an $O(1)$ value of the KM phase.$^3$ The other observed $CP$ violating quantity in kaon decay, $\epsilon'_K$, is notoriously hard to calculate, so hadronic uncertainties have precluded precision tests of the KM mechanism. In the kaon sector these will come from the study of $K \to \pi \nu \bar{\nu}$ decays. The BNL E949 experiment observed the 3rd event, yielding$^5$

$$B(K^+ \to \pi^+ \nu \bar{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}. \quad (3)$$

This is consistent with the SM within the large uncertainties, but much more statistics is needed to make definitive tests.

The $D$ meson system is complementary to $K$ and $B$ mesons, because flavor and $CP$ violation are suppressed both by the GIM mechanism and by the Cabibbo angle. Therefore, $CPV$ in $D$ decays, rare $D$ decays, and $D - \bar{D}$ mixing are predicted to be small in the SM and have not been observed. The $D^0 - \bar{D}^0$ is the only neutral meson mixing generated by down-type quarks in the SM (up-type squarks in SUSY). The strongest hint for $D^0 - \bar{D}^0$ mixing is$^6$

$$y_{CP} = \frac{\Gamma(CP \text{ even}) - \Gamma(CP \text{ odd})}{\Gamma(CP \text{ even}) + \Gamma(CP \text{ odd})} = (0.9 \pm 0.4)\%. \quad (4)$$

Unfortunately, because of hadronic uncertainties, this measurement cannot be interpreted as a sign of new physics.$^7$ At the present level of sensitivity, $CPV$ would be the only clean signal of NP in the $D$ sector.

2 $CP$ violation in $B$ decays and $B \to J/\psi K_S$

2.1 $CP$ violation in decay

$CP$ violation in decay is in some sense its simplest form, and can be observed in both charged and neutral meson as well as in baryon decays. It requires at least two amplitudes with nonzero relative weak ($\phi_k$) and strong ($\delta_k$) phases to contribute to a decay:

$$A_f = \langle f | H | B \rangle = \sum_k A_k e^{i\phi_k} e^{i\delta_k},$$

$$A_{\bar{f}} = \langle \bar{f} | H | \bar{B} \rangle = \sum_k A_k e^{i\phi_k} e^{-i\delta_k}. \quad (5)$$

If $|A_{\bar{f}}/A_f| \neq 1$ then $CP$ is violated.

This type of $CP$ violation is unambiguously observed in the kaon sector by $\epsilon'_K \neq 0$, and now it is also established in $B$ decays with $5.7\sigma$ significance,

$$A_{K^- \pi^+} \equiv \frac{B(B \to K^-\pi^+)}{B(B \to K^+\pi^-)} = -0.109 \pm 0.019, \quad (6)$$

averaging the BABAR,$^8$ BELLE,$^9$ CDF,$^{10}$ and CLEO$^{11}$ measurements. This is simply a counting experiment: there are a significantly larger number of $B^0 \to K^+\pi^-$ than $\bar{B}^0 \to K^-\pi^+$ decays.

This measurement implies that after the “$K$-superweak” model,$^{12}$ now also “$B$-superweak” models are excluded. I.e., models in which $CP$ violation in the $B$ sector only
occurs in $B^0 - \bar{B}^0$ mixing are no longer viable. This measurement also establishes that there are sizable strong phases between the tree ($T$) and penguin ($P$) amplitudes in charmless $B$ decays, since estimates of $|T/P|$ are not much larger than $A_{K-\pi^+}$. (Note that a sizable strong phase has also been established in $B \to \psi K^*$.\textsuperscript{13,14}) Such information on strong phases will have broader implications for the theory of charmless nonleptonic decays and for understanding the $B \to K\pi$ and $\pi\pi$ rates discussed in Sec. 6.2.

The bottom line is that, similar to the situation with $\epsilon'$, our present theoretical understanding is insufficient to either prove or rule out that NP enters the rates in Eq. (6).

### 2.2 CPV in mixing

The two $B$ meson mass eigenstates are related to the flavor eigenstates via

$$|B_{L,H}\rangle = p|B^0\rangle \pm q|\bar{B}^0\rangle. \quad (7)$$

$CP$ is violated if the mass eigenstates are not equal to the $CP$ eigenstates. This happens if $|q/p| \neq 1$, i.e., if the physical states are not orthogonal, $\langle B_H|B_L\rangle \neq 0$, indicating that this is an intrinsically quantum mechanical phenomenon.

The simplest example of this type of $CP$ violation is the semileptonic decay asymmetry to “wrong sign” leptons,

$$A_{SL} = \frac{\Gamma(B^0(t) \to e^+X) - \Gamma(B^0(t) \to e^-X)}{\Gamma(B^0(t) \to e^+X) + \Gamma(B^0(t) \to e^-X)} = 1 - |q/p|^4 = (0.05 \pm 0.71)\% \quad (8)$$

implying $|q/p| = 1.0003 \pm 0.0035$, which is dominated by a new BELLE measurement.\textsuperscript{15} In kaon decays the similar asymmetry has been measured,\textsuperscript{16} in agreement with the expectation that it is equal to $4\Re \epsilon$.

The calculation of $A_{SL}$ is only possible from first principles in the $m_b \gg \Lambda_{QCD}$ limit using an operator product expansion to evaluate the relevant nonleptonic rates. The calculation has sizable uncertainties by virtue of our limited understanding of $b$ hadron lifetimes. Last year the NLO QCD calculation of $A_{SL}$ was completed,\textsuperscript{17,18} predicting $A_{SL} = (5.5 \pm 1.3) \times 10^{-4}$, where I averaged the central values and quoted the larger of the two theory error estimates. (The similar asymmetry in the $B_s$ sector is expected to be $\lambda^2$ smaller.) Although the experimental error in Eq. (8) is an order of magnitude larger than the SM expectation, this measurement already constraints new physics,\textsuperscript{19} as the $m_{\tau}^2/m_{\pi}^2$ suppression of $A_{SL}$ in the SM can be avoided by NP.

#### 2.3 CPV in the interference between decay with and without mixing, $B \to J/\psi K_S$ and its implications

It is possible to obtain theoretically clean information on weak phases in $B$ decays to certain $CP$ eigenstate final states. The interference phenomena between $B^0 \to f_{CP}$ and $B^0 \to \bar{B}^0 \to f_{CP}$ is described by

$$\lambda_{f_{CP}} = \frac{q}{p} \frac{A_{f_{CP}}}{A_{f_{CP}}} \quad (9)$$

Experimentally one can study the time dependent $CP$ asymmetry,

$$a_{f_{CP}} = \frac{\Gamma(B^0(t) \to f) - \Gamma(\bar{B}^0(t) \to f)}{\Gamma(B^0(t) \to f) + \Gamma(\bar{B}^0(t) \to f)} = S_f \sin(\Delta m t) - C_f \cos(\Delta m t) \quad (10)$$

where

$$S_f = \frac{2\Im \lambda_f}{1 + |\lambda_f|^2}, \quad C_f(= -A_f) = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \quad (11)$$

If amplitudes with one weak phase dominate a decay then $a_{f_{CP}}$ measures a phase in the Lagrangian theoretically cleanly. In this case $C_f = 0$, and $a_{f_{CP}} = \Im \lambda_f \sin(\Delta m t)$, where $\arg \lambda_f$ is the phase difference between the two decay paths (with or without mixing).

The theoretically cleanest example of this type of $CP$ violation is $B \to \psi K_S$. While there are tree and penguin contributions to the decay with different weak phases, the dominant part of the penguin amplitudes...
have the same weak phase as the tree amplitude. Therefore, contributions with the tree amplitude’s weak phase dominate, to an accuracy better than $\sim 1\%$. In the usual phase convention $\arg \lambda_{\psi K_S} = (B$-mixing $= 2\beta) + (\text{decay} = 0) + (K$-mixing $= 0)$, so we expect $S_{\psi K} = \sin 2\beta$ and $C_{\psi K} = 0$ to a similar accuracy. The new world average is

$$\sin 2\beta = 0.726 \pm 0.037,$$  \hspace{1cm} (12)

which is now a 5\% measurement. For the first time $\cos 2\beta$ has also been constrained, by studying angular distributions in the time dependent $B \to \psi K^{*0}$ analysis. BABAR obtained\textsuperscript{13} $\cos 2\beta = +2.72^{+0.50}_{-0.59} \pm 0.27$, excluding the negative $\cos 2\beta$ solution at the 89\% CL. With more data, this will eliminate 2 of the 4 discrete ambiguities, corresponding to $\beta = (\pi - \arcsin S_{\psi K})/2$ and $\beta = (3\pi - \arcsin S_{\psi K})/2$.

$S_{\psi K}$ was the first observation of CP violation outside the kaon sector, and the first observation of an $O(1)$ effect that violates CP. It implies that models with approximate CP symmetry (in the sense that all CPV phases are small) are excluded. The constraints on the CKM matrix from the measurements of $S_{\psi K}, |V_{ub}/V_{cb}|, \epsilon_K, B$ and $B_s$ mixing are shown in Fig. 2 using the CKM-fitter package.\textsuperscript{20,21} The overall consistency between these measurements constitutes the first precise test of the CKM picture. It also implies that it is unlikely that we will find $O(1)$ deviations from the SM, and we should look for corrections rather than alternatives of the CKM picture.

3 Other CP asymmetries that are approximately $\sin 2\beta$ in the SM

The $b \to s$ transitions, such as $B \to \phi K_S, \eta' K_S, K^+ K^- K_S$, etc., are dominated by one-loop (penguin) diagrams in the SM, and therefore new physics could compete with the SM contributions.\textsuperscript{22} Using CKM unitarity we can write the contributions to such decays as a term proportional to $V_{ub} V_{us}^{\ast}$ and another proportional to $V_{ub} V_{us}^{\ast}$. Since their ratio is $O(\lambda^2) \approx 0.05$, we expect amplitudes with one weak phase to dominate these decays as well. Thus, in the SM, the measurements of $-\eta_{f} S_{f}$ should agree with each other and with $S_{\psi K}$ to an accuracy of order $\lambda^2 \approx 0.05$.

If there is a SM and a NP contribution, the asymmetries depend on their relative size and phase, which depend on hadronic matrix elements. Since these are mode-dependent, the asymmetries will, in general, be different between the various modes, and different from $S_{\psi K}$. One may also find $C_{f}$ substantially different from 0. (NP would have to dominate over the SM amplitude in order that the asymmetries become different from the SM and equal to one other.)

The averages of the latest BABAR\textsuperscript{23} and BELLE\textsuperscript{24} results are shown in Table 1. The two data sets are more consistent than before, so averaging them seems meaningful at this time. The single largest deviation from the SM is in the $\eta'/K_S$ mode,

$$S_{\psi K} - S_{\eta' K_S} = 0.31 \pm 0.12,$$ \hspace{1cm} (13)

which is $2.6\sigma$. The average $CP$ asymmetry in all $b \to s$ modes, which also equals $S_{\psi K}$ in
Table 1. $CP$ asymmetries for which the SM predicts $-\eta_f S_f \approx \sin 2\beta$. The 3rd column contains my estimates of limits on the deviations from $\sin 2\beta$ in the SM (strict bounds are worse), and the last two columns show the world averages.\textsuperscript{25} (The $CP$-even fractions in $K^+ K^- K_S$ and $D^+ D^-$ are determined experimentally.)

| Dominant process | final state | SM upper limit on $|\sin 2\beta_{\text{eff}} - \sin 2\beta|$ | $\sin 2\beta_{\text{eff}}$ | $C_f$ |
|------------------|-------------|-----------------------------------------------|------------------|------|
| $b \to c\bar{c}s$ | $\psi K_S$  | $< 0.01$                                      | $+0.726 \pm 0.037$ | $+0.031 \pm 0.029$ |
| $b \to c\bar{c}d$ | $\psi \pi^0$ | $\sim 0.2$                                    | $+0.40 \pm 0.33$   | $+0.12 \pm 0.24$   |
|                   | $D^+ D^-$   | $\sim 0.2$                                    | $+0.20 \pm 0.32$   | $+0.28 \pm 0.17$   |
| $b \to s\bar{q}q$ | $\phi K^0$  | $\sim 0.05$                                    | $+0.34 \pm 0.20$   | $-0.04 \pm 0.17$   |
|                   | $\eta' K_S$ | $\sim 0.1$                                    | $+0.41 \pm 0.11$   | $-0.04 \pm 0.08$   |
|                   | $K^+ K^- K_S$ | $\sim 0.15$                        | $+0.53 \pm 0.17$   | $-0.09 \pm 0.10$   |
|                   | $\pi^0 K_S$ | $\sim 0.15$                                    | $+0.34 \pm 0.28$   | $+0.09 \pm 0.14$  |
|                   | $f_0 K_S$   | $\sim 0.15$                                    | $+0.39 \pm 0.26$   | $+0.14 \pm 0.22$  |
|                   | $\omega K_S$ | $\sim 0.15$                                | $+0.75 \pm 0.66$   | $-0.26 \pm 0.50$  |

the SM, has a more significant deviation,

$$S_{\psi K} - (\sim -\eta_f S_f(b \to s)) = 0.30 \pm 0.08.$$ \hfill (14)

This $3.5\sigma$ effect comes from $2.7\sigma$ at BABAR and $2.4\sigma$ at BELLE. It is less than $3.5\sigma$ signal for NP, because some of the modes included may deviate significantly from $S_{\psi K}$ in the SM. However, there is another $3.1\sigma$ effect,

$$S_{\psi K} - (S_{\eta' K_S, \phi K_S}) = 0.33 \pm 0.11.$$ \hfill (15)

The entries in the third column in Table 1 show my estimates of limits on the deviations from $S_{\psi K}$ in the SM. The hadronic matrix elements multiplying the generic $O(0.05)$ suppression of the “SM pollution” are hard to bound model independently,\textsuperscript{26} so strict bounds are weaker, while model calculations tend to obtain smaller limits. I attempted to list reasonable benchmarks for each mode.

### 3.1 Implications of the data

To understand the significance of Eq. (13) and (15), note that a conservative bound using $SU(3)$ flavor symmetry and (updated) experimental limits on related modes gives\textsuperscript{26,27} $|S_{\psi K} - S_{\eta' K_S}| < 0.2$ in the SM. Most other estimates obtain bounds a factor of two smaller or even better (these are also more model dependent). Thus we can be confident that, if established at the $5\sigma$ level, $S_{\eta' K_S} \approx 0.4$ would be a sign of NP. (The deviation of $S_{\eta' K_S}$ from $S_{\phi K}$ is now less than $2\sigma$, but there is room for discovery, as the present central value of $S_{\omega K}$ with a smaller error could still establish NP.) The largest deviation from the SM at present is the $3.5\sigma$ effect in $(\sim -\eta_f S_f(b \to s))$. Such a discovery would exclude in addition to the SM, models with minimal flavor violation, and universal SUSY models, such as gauge mediated SUSY breaking.

In the last few years the central value of $S_{\phi K_S}$ got closer to $S_{\psi K}$, while $S_{\eta' K_S}$ got further from it, disfavoring models in which NP enters $S_{\phi K_S}$ but not $S_{\eta' K_S}$. This includes models of parity-even NP, which would affect $B \to \phi K_S$ (odd $\to$ odd) but not $B \to \eta' K_S$ (odd $\to$ even). This happens, for example, in a left-right-symmetric SUSY model, if the LRS breaking scale is high enough so that direct effects from the $W_R$ sector are absent.\textsuperscript{28} This scenario is disfavored also because the $K^+ K^- K_S$ final state is $P$-odd, just like $\phi K_S$.

Model building may actually become more interesting with the new data. The present central values of $S_{\eta' K_S}$ and $S_{\phi K_S}$ can be reasonably accommodated with NP, such as SUSY (unlike $O(1)$ deviations from $S_{\psi K}$). While $B \to X_s\gamma$ mainly constrains LR mass insertions, penguins shown in Fig. 3 involving $RR$ (and $LL$) mass insertions can give
sizable effect in $b \to s$ transitions. However, as of this conference, we also know that $\mathcal{B}(B \to X_s \ell^+\ell^-) = (4.5 \pm 1.0) \times 10^{-6}$ agrees with the SM at the $\mathcal{O}(20\%)$ level, which gives new constraints on the $RR$ and $LL$ mass insertions (replace $g \to Z$ and $s\bar{s} \to \ell^+\ell^-$).

4 Measurements of $\alpha$ and $\gamma$

To clarify notation, I’ll call a $\gamma$-measurement the determination of the phase difference between $b \to u$ and $b \to c$ transitions, while $\alpha$ will refer to the measurements of $\gamma$ in the presence of $B - \bar{B}$ mixing ($\alpha \equiv \pi - \beta - \gamma$). Interestingly, the methods that give the best results were not even talked about before 2003.

4.1 $\alpha$ from $B \to \pi\pi$

In contrast to $B \to \psi K$, which is dominated by amplitudes with one week phase, it is now well-established that in $B \to \pi^+\pi^-$ there are two comparable contributions with different weak phases. Therefore, to determine $\alpha$ model independently, it is necessary to carry out the isospin analysis. The hardest ingredient is the measurement of the $\pi^0\pi^0$ mode,

$$\mathcal{B}(B \to \pi^0\pi^0) = (1.51 \pm 0.28) \times 10^{-6}, \quad (16)$$

and in particular the need to measure the $CP$-tagged rates. At this conference BABAR$^{32}$ and BELLE$^{9}$ presented the first such measurements, giving the world average

$$\frac{\Gamma(B \to \pi^0\pi^0) - \Gamma(B \to \pi^0\pi^0)}{\Gamma(B \to \pi^0\pi^0) + \Gamma(B \to \pi^0\pi^0)} = 0.28 \pm 0.39. \quad (17)$$

Thus, for the first time, we can determine from the isospin analysis (with sizable error) the penguin pollution, $\alpha - \alpha_{\text{eff}} \equiv \sin 2\alpha_{\text{eff}} \equiv S_{\pi^+\pi^-}$. In Fig. 4, the blue (shaded) region shows the confidence level including Eq. (17), while the red (thicker solid) curve is the constraint without it. One finds $|\alpha - \alpha_{\text{eff}}| < 37^\circ$ at $90\%$ CL [slight improvement over the $39^\circ$ bound without Eq. (17)], indicating that it will take a lot more data to determine $\alpha$ precisely. The interpretation for $\alpha$ is unclear at present, due to the marginal consistency of the $S_{\pi^+\pi^-}$ measurements; see Table 2.

<table>
<thead>
<tr>
<th>$B \to \pi^+\pi^-$</th>
<th>$\sin 2\alpha_{\text{eff}}$</th>
<th>$C_{\pi^+\pi^-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABAR</td>
<td>$-0.30 \pm 0.17$</td>
<td>$-0.09 \pm 0.15$</td>
</tr>
<tr>
<td>BELLE</td>
<td>$-1.00 \pm 0.22$</td>
<td>$-0.58 \pm 0.17$</td>
</tr>
<tr>
<td>average</td>
<td>$-0.61 \pm 0.14$</td>
<td>$-0.37 \pm 0.11$</td>
</tr>
</tbody>
</table>

4.2 $\alpha$ from $B \to \rho\rho$

$B \to \rho\rho$ is more complicated than $B \to \pi\pi$ in that a vector-vector ($VV$) final state is a mixture of $CP$-even ($L = 0$ and 2) and -odd ($L = 1$) components. The $B \to \pi\pi$ isospin analysis applies for each $L$ in $B \to \rho\rho$ (or in the transversity basis for each $\sigma = 0, \parallel, \perp$). The situation is simplified dramatically by the experimental observation that in the $\rho^+\rho^-$ and $\rho^+\rho^-$ modes the longitudinal polarization fraction is near unity (see Sec. 6.1), so the $CP$-even fraction dominates. Thus, one
can simply bound $\alpha - \alpha_{\text{eff}}$ from\textsuperscript{33}
\[ B(B \to \rho^0 \rho^0) < 1.1 \times 10^{-6} \ (90\% \ CL). \] (18)
The smallness of this rate implies that $\alpha - \alpha_{\text{eff}}$ in $B \to \rho\rho$ is much smaller than in $B \to \pi\pi$.
To indicate the difference, note that $B(B \to \pi^0 \pi^0)/B(B \to \pi^+ \pi^-) = 0.27 \pm 0.06$, while $B(B \to \rho^0 \rho^0)/B(\rho^- \rho^0) < 0.04$ (90\% CL).
From $s_{\rho^0 \rho^-}$ and the isospin bound on $\alpha - \alpha_{\text{eff}}$ BABAR obtains\textsuperscript{33}
\[ \alpha = 96 \pm 10 \pm 4 \pm 11^\circ (\alpha - \alpha_{\text{eff}}). \] (19)
Ultimately the isospin analysis is more complicated in $B \to \rho\rho$ than in $\pi\pi$, because the nonzero value of $\Gamma_{\rho}$ allows for the final state to be in an isospin-1 state.\textsuperscript{34} This only affects the results at the $O(\Gamma_{\rho}^2/m_{\pi}^2)$ level, which is smaller than other errors at present.
With higher statistics, it will be possible to constrain this effect using the data.\textsuperscript{34}

### 4.3 $\alpha$ from $B \to \rho\pi$

In the two-body analysis isospin symmetry gives two pentagon relations.\textsuperscript{35} Solving them would require measurements of the rates and $CP$ asymmetries in all the $B \to \rho^+\pi^-$, $\rho^-\pi^+$, and $\rho^0\pi^0$ modes, which is not available.
While BABAR set a 90\% CL upper bound\textsuperscript{36} $B(B \to \rho^0\pi^0) < 2.9 \times 10^{-6}$, BELLE measured\textsuperscript{37} $B(B \to \rho^0\pi^0) = (5.1 \pm 1.6 \pm 0.9) \times 10^{-6}$. The two experiments agree on the rate.

Including $\alpha$ extracted from $B \to \pi\pi$ would make only a small difference at present, shifting $\alpha$ to $(100^{+12}_{-10})^\circ$. It is interesting to note that the direct determination of $\alpha$ in Eq. (22) is already more precise than it is from the $CP$ fit.

### 4.4 Combined determination of $\alpha$

The combination of these measurements of $\alpha$ is shown in Fig. 5. Due to the marginal consistency of the $S_{\pi\pi^-}$ data, I quote the average of $s_{\rho^0 \rho^-}$ and the $\rho\pi$ Dalitz analysis,
\[ \alpha = (103 \pm 11)^\circ. \] (22)

Including $\alpha$ extracted from $B \to \pi\pi$ would make only a small difference at present, shifting $\alpha$ to $(100^{+12}_{-10})^\circ$. It is interesting to note that the direct determination of $\alpha$ in Eq. (22) is already more precise than it is from the $CP$ fit.

### 4.5 $\gamma$ from $B^\pm \to DK^\pm$

The idea is to measure the interference of $B^- \to D^0 K^- (b \to c\bar{s}b)$ and $B^- \to \bar{D}^0 K^- (b \to c\bar{s}b)$ transitions, which can be studied in final states accessible in both $D^0$ and $\bar{D}^0$ decays.\textsuperscript{41, 42} In principle, it is possible to extract the $B$ and $D$ decay amplitudes, the relative strong phases, and the weak phase $\gamma$ from the data.

A practical complication is that the amplitude ratio
\[ r_B \equiv \frac{A(B^- \to \bar{D}^0 K^-)}{A(B^- \to D^0 K^-)} \] (23)
is expected to be small. To make the two interfering amplitudes comparable in size, the
Both amplitudes Cabibbo allowed; can inte-
Sensitivity crucially depends on:
Many variants according to
\( D = 88 \pm 77 \) and \( D^0 = 0 \)
\( K \) more precisely
(→ B → b)
\( 17 \pm 10 \) and \( 9 \pm 10 \)
can be avoided.45

It was recently realized47,48 that both \( D^0 \) and \( D^0 \) have Cabibbo-allowed decays to cer-
tain 3-body final states, such as \( K_S \pi^+ \pi^- \).
This analysis has only a two-fold discrete am-
biguity, and one can integrate over regions of
the Dalitz plot, potentially enhancing the sen-
sitivity. The best present determination of \( \gamma \) comes from this analysis. BELLE ob-
tained from 140 fb\(^{-1} \) data49

\[ \gamma = 77^{+17}_{-19} \pm 13 \pm 11^0 \text{(model)} , \]  
while BABAR found from 191 fb\(^{-1} \) data46

\[ \gamma = 88 \pm 41 \pm 19 \pm 10^0 \text{(model)} . \]  
The sizable difference in the errors in these
measurements is due to the large correlation
between the error of \( \gamma \) and the value of \( r_B \),
as shown in Fig. 6. While BELLE found50
\( r_B = 0.26^{+0.11}_{-0.15} \pm 0.03 \pm 0.04 \), BABAR ob-
tained \( r_B < 0.18 \) (90% CL), with the central
values shown in Fig. 6. From the ADS
analyses 90% CL upper bounds on \( r_B \) were
obtained, \( r_B < 0.23 \) at BABAR46 and \( r_B < 0.28 \) at BELLE.50 These analyses are consis-
tent with each other at the 1–1.5\( \sigma \) level, but
it will take more data to pin down \( r_B \) and
determine \( \gamma \) more precisely.

5 Implications of the first \( \alpha \) and \( \gamma \)
measurements
Since the goal of the \( B \) factories is to overcon-
strain the CKM matrix, one should include in
the CKM fit all measurements that are not
limited by theoretical uncertainties. The re-
sult of such a fit is shown in Fig. 7, which
includes in addition to the inputs in Fig. 2
the following: (i) \( \alpha \) from \( B \to \rho \rho \) and from
the \( \rho \pi \) Dalitz analysis, (ii) \( \gamma \) from \( B \to DK \)
(with \( D \to K_S \pi^+ \pi^- \)), and (iii) 2\( \beta \) + \( \gamma \) from
\( B \to D^{(*)} \pi \pi \) measurements.

The best fit region in Fig. 7 shrinks only
slightly compared to Fig. 2. An interesting
consequence of the new fit is a noticeable
reduction in the allowed range of \( B_s - B_s \)
mixing. While the standard CKM fit gives
\( \Delta m_s = (17.9^{+10.5}_{-2.8}) \) ps\(^{-1} \) at 1\( \sigma \) [2\( \sigma \)], the
new fit gives \( \Delta m_s = (17.9^{+7.4}_{-1.4} \pm 13.3) \) ps\(^{-1} \).
5.1 New physics in $B^0 - \bar{B}^0$ mixing

The new measurements of $\alpha$ and $\gamma$ play a more significant role in constraining new physics. In a large class of models the dominant effect of NP is to modify the $B^0 - \bar{B}^0$ mixing amplitude, $M_{12}^{\text{SM}} = M_{12}(\text{SM}) r_d^2 \cos 2\theta_d$.

Then $\Delta m_B = r_d^2 \Delta m_{B,\text{SM}}$, $S_{\psi K} = \sin(2\beta + 2\theta_d)$, while $|V_{ub}/V_{cb}|$ and $\gamma$ measured from $B \to DK$ are tree-level measurements which are unaffected. Since $\theta_d$ drops out from $\alpha + \beta$, the measurements of $\alpha$ in these models together with $\beta$ are effectively equivalent to a NP-independent measurement of $\gamma$ (up to discrete ambiguities).

Fig. 8 shows the fit results using only $|V_{ub}/V_{cb}|$, $\Delta m_B$ and $S_{\psi K}$ as inputs (left) and also including the measurements of $\alpha$, $2\beta + \gamma$, $A_{SL}$ and $\cos 2\beta$ (right) in the $\rho - \eta$ plane (top) and the $r_d^2 - 2\theta_d$ plane (bottom). The top plots show that in such models the new measurements constrain $(\rho, \eta)$ almost entirely to the SM region, while the bottom plots show that the allowed region in the new physics parameter space, $(r_d^2, 2\theta_d)$, has shrunk significantly, severely constraining NP in $B^0 - \bar{B}^0$ mixing for the first time.
6 Theoretical developments

$B$ physics is not only a great place to look for new physics, it also allows us to study the interplay of weak and strong interactions in the SM at a level of unprecedented detail. There are many observables very sensitive to NP, and the question is whether we can disentangle possible signals of NP from the hadronic physics. In the last few years there has been significant progress toward a model independent theory of certain exclusive nonleptonic decays in the $m_B \gg \Lambda_{QCD}$ limit.

While the theory of nonleptonic $B$ decays is most developed for heavy-to-heavy decays of the type $B \to D^{(*)} \pi$ and $\Lambda_b \to \Lambda_c \pi$ or $\Sigma_c \pi$, here we concentrate on charmless $B$ decays, as these are the most sensitive to new physics. There are several approaches. The soft form factor and hard scattering contributions are of the same order in the $1/m_b$ power counting. Both Beneke et al. and Keum et al. make assumptions about the $\alpha_s$ suppression of one or the other term. An SCET analysis finds the two terms comparable, but predictive power is retained.

One of the most contentious issues is the role of charm penguins, and whether strong phases are small. ($A_{K^- \pi^+}$ in Eq. (6) tells us that strong phases are large.) As far as I can tell, no suppression of the long distance part of charm penguins has been proven. In the absence of such a proof, we should view this as a nonperturbative $O(1)$ term that can give rise to many “unexpected” things, such as strong phases. (Note that whether one talks about “long distance charm loops”, “charming penguins”, or “$D\bar{D}$ rescattering”, it’s all the same thing with different names.)

6.1 Polarization in charmless $B \to VV$

It has been argued that the chiral structure of the SM and the heavy quark limit imply that charmless $B$ decays to a pair of vector mesons, such as $B \to \phi K^*$, $\rho \rho$, and $\rho K^*$ must have longitudinal polarization fractions near unity, $f_L = 1 - O(1/m_b^2)$. It is now well-established (see Table 3) that in the penguin dominated $\phi K^*$ modes $f_L \approx 0.5$. We would like to know if this is consistent with the SM.

Recently several explanations were proposed why the data may be consistent with the SM. In SCET the charm penguins, if they indeed have an unsuppressed long distance part, can explain the data. The $D^{(*)}D^{(*)}$ rescattering can be viewed as a model calculation of this effect. It has also been argued that there are large $O(1/m_b^2)$ effects from annihilation graphs, however, if this is to explain an $O(1)$ effect in $f_L$ then the validity of the whole expansion should be questioned. Unfortunately it may be difficult to experimentally distinguish between these two proposals, as they appear to enter different rates in the same ratios.

While the $f_L(\phi K^*)$ data may be a result of a new physics contribution (just like $A_{K^- \pi^+}$), we cannot rule out at present that it is simply due to SM physics.

<table>
<thead>
<tr>
<th>$B$ decay</th>
<th>Longitudinal polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BELLE</td>
</tr>
<tr>
<td>$\rho^- \rho^+$</td>
<td>0.99 ± 0.04</td>
</tr>
<tr>
<td>$\rho^0 \rho^+$</td>
<td>0.95 ± 0.11</td>
</tr>
<tr>
<td>$\omega \rho^+$</td>
<td>0.88 ± 0.12</td>
</tr>
<tr>
<td>$\rho^0 K^{*0}$</td>
<td>0.50 ± 0.20</td>
</tr>
<tr>
<td>$\rho^- K^{*0}$</td>
<td>0.52 ± 0.08</td>
</tr>
<tr>
<td>$\phi K^{*0}$</td>
<td>0.49 ± 0.14</td>
</tr>
</tbody>
</table>

6.2 $B \to K\pi$ branching ratios and CP asymmetries

$B \to K\pi$ decays are sensitive to the interference of $b \to s$ penguin and $b \to u$ tree processes (and possible new physics). The SM contributions that interfere have different weak and possibly different strong phases, so the challenge is if one can make sufficiently
precise predictions to do sensitive tests.

The world average branching ratios and CP asymmetries are shown in Table 4. Besides the 5σ measurement of $A_{K^-\pi^+}$, another interesting feature of the data is the 3.3σ difference, $A_{K^-\pi^0} - A_{K^-\pi^+} = 0.15 \pm 0.04$. Assuming the SM, this is a problem for approaches in which “color allowed” tree amplitudes are predicted to dominate over “color suppressed” trees (and electroweak penguins). In SCET it is natural that color allowed and suppressed tree amplitudes are comparable in charmless $B$ decays.59

Concerning the branching ratios, I have been warned by several experimentalists that their interpretation should be handled with care. There are four ratios that have been extensively discussed in the literature,65-72

$$ R_c \equiv \frac{2B(B^+ \rightarrow \pi^0 K^+)}{B(B^+ \rightarrow \pi^+ K^0) + B(B^- \rightarrow \pi^- \bar{K}^0)} = 1.004 \pm 0.084, $$
$$ R_o \equiv \frac{1}{2} \frac{B(B^0 \rightarrow \pi^+ K^-) + B(\bar{B}^0 \rightarrow \pi^- K^0)}{B(B^0 \rightarrow \pi^+ K^-) + B(\bar{B}^0 \rightarrow \pi^- K^0)} = 0.789 \pm 0.075, $$
$$ R \equiv \frac{\Gamma(B^0 \rightarrow \pi^- K^+) + \Gamma(\bar{B}^0 \rightarrow \pi^- \bar{K}^0)}{\Gamma(B^+ \rightarrow \pi^+ K^0) + \Gamma(B^- \rightarrow \pi^- \bar{K}^0)} = 0.820 \pm 0.056, $$
$$ R_L \equiv \frac{\Gamma(B^- \rightarrow \pi^0 K^-) + \Gamma(\bar{B}^0 \rightarrow \pi^0 \bar{K}^0)}{\Gamma(B^- \rightarrow \pi^- \bar{K}^0) + \Gamma(\bar{B}^0 \rightarrow \pi^+ K^-)} = 1.123 \pm 0.070. $$

Having seen these impressive measurements, one should ask where we go from here in flavor physics? 73 Whether we see in the next few years stronger signals of flavor physics beyond the SM will certainly be decisive. The existing measurements could have shown deviations from the SM, and if there are new particles at the TeV scale, new flavor physics could show up “any time”. In fact, we do not know whether we are seeing hints or just statistical fluctuations in the $S_{b\rightarrow s}$ data.

For BABAR and BELLE, reducing the error of $S_{b\rightarrow s}$ to the few percent level has been a well-defined target. The data sets have roughly doubled each year for the past several years, and will reach 500-1000 fb$^{-1}$ each in a few years, possibly allowing for unambiguous observation of NP if the central values do not change too much. If NP is seen in flavor physics then we will certainly want to study

### Table 4. World average CP-averaged $B \rightarrow \pi K$ branching ratios, and CP asymmetries.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>$B \times 10^{-6}$</th>
<th>$A_{CP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow \pi^+ K^-$</td>
<td>18.2 ± 0.8</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>$B^- \rightarrow \pi^0 K^-$</td>
<td>12.1 ± 0.8</td>
<td>0.04 ± 0.04</td>
</tr>
<tr>
<td>$B^- \rightarrow \pi^- \bar{K}^0$</td>
<td>24.1 ± 1.3</td>
<td>0.02 ± 0.03</td>
</tr>
<tr>
<td>$\bar{B}^0 \rightarrow \pi^0 \bar{K}^0$</td>
<td>11.5 ± 1.0</td>
<td>0.00 ± 0.16</td>
</tr>
</tbody>
</table>

where $\Gamma \equiv B/\tau$, and $\bar{\Gamma}$ in the last equation denotes the CP-averaged widths. These ratios are interesting, as their deviations from unity are sensitive to different corrections to the dominant penguin amplitudes.

The pattern of these ratios is quite different from what it was before ICHEP: $R_c$ and $R_L$ got significantly closer to unity, while $R_S$'s deviation from unity increased. This seems to disfavor the new physics explanation,67 according to which NP primarily enters electroweak penguin contributions. This is because electroweak penguins are color allowed in the modes involving $\pi^0$'s, such as $R_c$, while they are color suppressed in the other ones, such as $R_S$.

Since $R_S$ is significantly below unity, at present the Fleischer-Mannel bound65 is interesting again, giving $\gamma < 75^\circ$ (95% CL). It will be fascinating to understand the theory in sufficient detail to sort out what the data is telling us, and also to see where the measurements will settle.

### 7 Outlook

Having seen these impressive measurements, one should ask where we go from here in flavor physics? 73 Whether we see in the next few years stronger signals of flavor physics beyond the SM will certainly be decisive. The existing measurements could have shown deviations from the SM, and if there are new particles at the TeV scale, new flavor physics could show up “any time”. In fact, we do not know whether we are seeing hints or just statistical fluctuations in the $S_{b\rightarrow s}$ data.

For BABAR and BELLE, reducing the error of $S_{b\rightarrow s}$ to the few percent level has been a well-defined target. The data sets have roughly doubled each year for the past several years, and will reach 500-1000 fb$^{-1}$ each in a few years, possibly allowing for unambiguous observation of NP if the central values do not change too much. If NP is seen in flavor physics then we will certainly want to study
Table 5. Some interesting measurements that are far from being theory limited. The errors for the $C\!P$ asymmetries in the first box refer to the angles in parenthesis, assuming typical values for other parameters.

<table>
<thead>
<tr>
<th>Measurement (in SM)</th>
<th>Theoretical limit</th>
<th>Present error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \to \psi K_S$ ($\beta$)</td>
<td>$\sim 0.2^\circ$</td>
<td>$1.6^\circ$</td>
</tr>
<tr>
<td>$B \to \phi K_S$, $\eta'$ $K_S$, ... ($\beta$)</td>
<td>$\sim 2^\circ$</td>
<td>$\sim 10^\circ$</td>
</tr>
<tr>
<td>$B \to \pi\pi, \rho\rho, \rho\pi$ ($\alpha$)</td>
<td>$\sim 1^\circ$</td>
<td>$\sim 15^\circ$</td>
</tr>
<tr>
<td>$B \to DK$ ($\gamma$)</td>
<td>$\ll 1^\circ$</td>
<td>$\sim 25^\circ$</td>
</tr>
<tr>
<td>$B \to \psi \phi$ ($\beta_s$)</td>
<td>$\sim 0.2^\circ$</td>
<td>—</td>
</tr>
<tr>
<td>$B \to D_s K$ ($\gamma - 2\beta_s$)</td>
<td>$\ll 1^\circ$</td>
<td>—</td>
</tr>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>V_{ub}</td>
<td>$</td>
</tr>
<tr>
<td>$B \to X_s \gamma$</td>
<td>$\sim 5%$</td>
<td>$\sim 10%$</td>
</tr>
<tr>
<td>$B \to X_s \ell^+ \ell^-$</td>
<td>$\sim 5%$</td>
<td>$\sim 20%$</td>
</tr>
<tr>
<td>$B \to X_s \nu \bar{\nu}, K^{(*)} \nu \bar{\nu}$</td>
<td>$\sim 5%$</td>
<td>—</td>
</tr>
<tr>
<td>$K^+ \to \pi^+ \nu \bar{\nu}$</td>
<td>$\sim 5%$</td>
<td>$\sim 70%$</td>
</tr>
<tr>
<td>$K_L \to \pi^0 \nu \bar{\nu}$</td>
<td>$&lt; 1%$</td>
<td>—</td>
</tr>
</tbody>
</table>

Acknowledgments

I am grateful to Andreas Höcker and Heiko Lackner for working out the CKM fits, Tom Browder and Jeff Richman for help with the experimental data, and all of them, Gilad Perez, and especially Yossi Nir for many interesting discussions. I thank the organizers for the invitation to a very enjoyable conference. This work was supported in part by the
References

5. V. V. Anisimovsky et al. [E949 Collaboration], hep-ex/0403036.
6. I. Shipsey, talk at this conference.
8. B. Aubert [BaBar Collaboration], hep-ex/0407057.
9. Y. Chao, talk at this conference.
14. T. Higuchi, talk at this conference.
15. K. Abe et al. [Belle Collaboration], hep-ex/0409012.
23. A. Höcker, talk at this conference.
24. Y. Sakai, talk at this conference.
30. A. Ali, talk at this conference.
32. M. Cristinziani, talk at this conference.
33. C. Dallapiccola, talk at this conference.
36. B. Aubert et al. [BABAR Collaboration], hep-ex/0311049.
37. J. Dragic et al. [BELLE Collaboration], hep-ex/0405068.
38. C. C. Wang et al. [Belle Collaboration], hep-ex/0408003.
45. A. Poluektov et al. [BELLE Collaboration], hep-ex/0406067.
46. A. Bozek, talk at this conference.