Neutrino Factory: Physics and R&D Status

PDF Version Also Available for Download.

Description

In recent years exciting experimental discoveries have shown that neutrino flavors oscillate, and hence that neutrinos have nonzero masses and mixings. The Standard Model needs to be modified to accommodate neutrino mass terms, which require either the existence of right-handed neutrinos to create Dirac mass terms, and/or a violation of lepton number conservation to create Majorana mass terms. The observation that neutrino masses and mass-splittings are tiny compared to the masses of any of the other fundamental fermions suggests radically new physics, which perhaps originates at the GUT or Planck Scale, or perhaps indicates the existence of new spatial dimensions. ... continued below

Physical Description

286 Kilobytes pages

Creation Information

Geer, Steve August 3, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In recent years exciting experimental discoveries have shown that neutrino flavors oscillate, and hence that neutrinos have nonzero masses and mixings. The Standard Model needs to be modified to accommodate neutrino mass terms, which require either the existence of right-handed neutrinos to create Dirac mass terms, and/or a violation of lepton number conservation to create Majorana mass terms. The observation that neutrino masses and mass-splittings are tiny compared to the masses of any of the other fundamental fermions suggests radically new physics, which perhaps originates at the GUT or Planck Scale, or perhaps indicates the existence of new spatial dimensions. Whatever the origin of the observed neutrino masses and mixings is, it will certainly require a profound extension to our picture of the physical world. The first step towards understanding this new physics is to pin down the measurable parameters, and address the first round of basic questions: (1) Are there only three neutrino flavors, or do light sterile neutrinos exist? Are there any other deviations to three-flavor mixing? (2) There is one angle {theta}{sub 13} in the mixing matrix which is unmeasured. Is it non-zero? (3) We don't know the mass-ordering of the neutrino mass eigenstates. There are two possibilities, the so-called ''normal'' or ''inverted'' hierarchies. Which is right? (4) There is one complex phase {delta} in the mixing matrix which is accessible to neutrino oscillation measurements. If both {theta}{sub 13} and sin {delta} are non-zero there will be CP Violation in the lepton sector. Is sin {delta} non-zero? (5) What precisely is the value of the lightest neutrino mass and are neutrino masses generated by Majorana mass terms, Dirac mass terms, or both? All of these questions, with the exception of the last one, can in principle be addressed by accelerator-based neutrino oscillation experiments. However, getting all of the answers will not be easy, and will require the right experimental tools. A Neutrino Factory appears to be the ultimate tool for probing appears to be the ultimate tool for probing neutrino oscillations. Hence the interest in this new type of neutrino source.

Physical Description

286 Kilobytes pages

Source

  • Workshop on Physics with a Multi-MW Proton Source, CERN, Geneva (CH), 05/25/2004--05/27/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-04/133-E
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 827356
  • Archival Resource Key: ark:/67531/metadc782221

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 3, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 5, 2016, 3:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Geer, Steve. Neutrino Factory: Physics and R&D Status, article, August 3, 2004; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc782221/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.