Large-eddy simulation of the stable boundary layer and implications for transport and dispersion

PDF Version Also Available for Download.

Description

Large-eddy simulation (LES) of the evolving stable boundary layer (SBL) provides unique data sets for assessing the effects of stable stratification on transport and dispersion. The simulations include the initial development of the convective boundary layer (CBL) in the afternoon, followed by the development of an SBL after sunset with a strong, surface-based temperature inversion. The structure of the turbulence is modified significantly by negative buoyancy associated with the temperature inversion. The magnitude of velocity variances is reduced by an order of magnitude compared to that in the CBL, and the vertical velocity variance is damped further as the static ... continued below

Physical Description

756 Kilobytes pages

Creation Information

Cederwall, R T & Street, R L February 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Large-eddy simulation (LES) of the evolving stable boundary layer (SBL) provides unique data sets for assessing the effects of stable stratification on transport and dispersion. The simulations include the initial development of the convective boundary layer (CBL) in the afternoon, followed by the development of an SBL after sunset with a strong, surface-based temperature inversion. The structure of the turbulence is modified significantly by negative buoyancy associated with the temperature inversion. The magnitude of velocity variances is reduced by an order of magnitude compared to that in the CBL, and the vertical velocity variance is damped further as the static stability preferentially damps vertical motions. The advanced subgrid-scale turbulence model allows simulation of intermittently enhanced periods of turbulence in the SBL that am often observed. During these turbulent episodes, mixing is increased within the SBL. Air pollution models that account only for the long-term mean structure of the SBL do not include the effects of these episodes. In contrast, our LES results imply that material released near the surface and mixed to higher elevations would be transported by stronger winds and in different directions, due to the vertical shear of horizontal wind speed and direction. Material released at altitude in the SBL will tend to be mixed downward toward the surface during these turbulent episodes in a fumigation-like scenario at night.

Physical Description

756 Kilobytes pages

Source

  • 7th International Conference on Air Pollution, San Francisco, CA (US), 07/27/1999--07/29/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-133362
  • Report No.: YN0100000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 8416
  • Archival Resource Key: ark:/67531/metadc782195

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 6, 2016, 2:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cederwall, R T & Street, R L. Large-eddy simulation of the stable boundary layer and implications for transport and dispersion, article, February 1, 1999; California. (digital.library.unt.edu/ark:/67531/metadc782195/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.