A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements

PDF Version Also Available for Download.

Description

In this project, we are developing new methods for interpreting measurements in complex wells (horizontal, multilateral and multi-branching wells) to determine the profiles of oil, gas, and water entry. These methods are needed to take full advantage of ''smart'' well instrumentation, a technology that is rapidly evolving to provide the ability to continuously and permanently monitor downhole temperature, pressure, volumetric flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and hence, to control and optimize well performance. In this first year, we have made considerable progress in the development of the forward model of temperature ... continued below

Physical Description

79 pages

Creation Information

Dawkrajai, Pinan; Romero, Analis A.; Yoshioka, Keita; Zhu, Ding; Hill, A.D. & Lake, Larry W. October 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In this project, we are developing new methods for interpreting measurements in complex wells (horizontal, multilateral and multi-branching wells) to determine the profiles of oil, gas, and water entry. These methods are needed to take full advantage of ''smart'' well instrumentation, a technology that is rapidly evolving to provide the ability to continuously and permanently monitor downhole temperature, pressure, volumetric flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and hence, to control and optimize well performance. In this first year, we have made considerable progress in the development of the forward model of temperature and pressure behavior in complex wells. In this period, we have progressed on three major parts of the forward problem of predicting the temperature and pressure behavior in complex wells. These three parts are the temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore or laterals in the producing intervals, and in the build sections connecting the laterals, respectively. Many models exist to predict pressure behavior in reservoirs and wells, but these are almost always isothermal models. To predict temperature behavior we derived general mass, momentum, and energy balance equations for these parts of the complex well system. Analytical solutions for the reservoir and wellbore parts for certain special conditions show the magnitude of thermal effects that could occur. Our preliminary sensitivity analyses show that thermal effects caused by near-wellbore reservoir flow can cause temperature changes that are measurable with smart well technology. This is encouraging for the further development of the inverse model.

Physical Description

79 pages

Notes

OSTI as DE00835630

Source

  • Other Information: PBD: 1 Oct 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-03NT15402
  • DOI: 10.2172/835630 | External Link
  • Office of Scientific & Technical Information Report Number: 835630
  • Archival Resource Key: ark:/67531/metadc782147

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 9, 2018, 10:23 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 21

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Dawkrajai, Pinan; Romero, Analis A.; Yoshioka, Keita; Zhu, Ding; Hill, A.D. & Lake, Larry W. A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements, report, October 1, 2004; Austin, Texas. (digital.library.unt.edu/ark:/67531/metadc782147/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.