Monitoring Genetic and Metabolic Potential for In-Situ Bioremediation: Mass Spectrometry

PDF Version Also Available for Download.

Description

A number of DOE sites are contaminated with dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride and trichloroethylene. At many of these sites, microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ. A rapid screening method to determine the broad range potential of a site's microbial population for contaminant degradation would greatly facilitate assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. Current laboratory-based treatability methods are cumbersome and expensive. In this project, we are developing methods based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for ... continued below

Physical Description

vp.

Creation Information

Buchanan, Michelle V.; Britt, Phillip F.; Doktycz, Mitchel J.; Hurst, Gregory B. & Lidstrom, Mary E. June 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A number of DOE sites are contaminated with dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride and trichloroethylene. At many of these sites, microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ. A rapid screening method to determine the broad range potential of a site's microbial population for contaminant degradation would greatly facilitate assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. Current laboratory-based treatability methods are cumbersome and expensive. In this project, we are developing methods based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for rapid and accurate detection of polymerase chain reaction (PCR) products from microbial genes involved in biodegradation of pollutants. PCR primers are being developed to amplify DNA sequences that are amenable to MALDI-MS detection. This work will lay the foundation for development of a field-portable MS-based technique for rapid on site assessment and monitoring of bioremediation processes.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-55108--2000
  • DOI: 10.2172/827403 | External Link
  • Office of Scientific & Technical Information Report Number: 827403
  • Archival Resource Key: ark:/67531/metadc782062

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2000

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 8:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Buchanan, Michelle V.; Britt, Phillip F.; Doktycz, Mitchel J.; Hurst, Gregory B. & Lidstrom, Mary E. Monitoring Genetic and Metabolic Potential for In-Situ Bioremediation: Mass Spectrometry, report, June 1, 2000; United States. (digital.library.unt.edu/ark:/67531/metadc782062/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.