CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS

PDF Version Also Available for Download.

Description

The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and ... continued below

Physical Description

vp.

Creation Information

Haire, M. J.; Forsberg, C. W.; Matveev, V. Z. & Shapovalov, V. I. October 3, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and design SNF casks based on today's requirements? The characteristics for a next-generation SNF cask system are examined and are found to be essentially the same in Russia and the United States. It appears that the new depleted uranium dioxide (DUO2)-steel cermet material will enable these requirements to be met. Depleted uranium (DU) is uranium in which a portion of the 235U isotope has been removed during a uranium enrichment process. The DUO2-steel cermet material is described. The United States and Russia are cooperating toward the development of a next-generation, dual-purpose, storage and transport SNF system.

Physical Description

vp.

Notes

INIS; OSTI as DE00839411

Source

  • Americas Nuclear Energy Symposium (ANES 2004), Miami, FL (US), 10/03/2004--10/06/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 839411
  • Archival Resource Key: ark:/67531/metadc782057

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 3, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Nov. 3, 2016, 7:27 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Haire, M. J.; Forsberg, C. W.; Matveev, V. Z. & Shapovalov, V. I. CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS, article, October 3, 2004; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc782057/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.