This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-96SR18500 with the U.S. Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, phone: (800) 553-6847, fax: (703) 605-6900, email: orders@ntis.fedworld.gov, online ordering: http://www.ntis.gov/help/index.asp

Available electronically at http://www.osti.gov/bridge
FILTERABILITY OF MONOSODIUM TITANATE SUPPLIED BY BLUE GRASS CHEMICAL SPECIALTIES

Michael R. Poirier
David T. Hobbs

April 13, 2004
Summary

The design specification for monosodium titanate (MST) requires that less than 1% of the particles are larger than 35 micron and that less than 1% of the particles are smaller than 1 micron. Blue Grass Chemical Specialties produced two batches of MST for the Defense Waste Processing Facility (DWPF) that do not meet the particle size specification. The material has more than 1% of the particles smaller than 1 micron. This increase in the fraction of particles less than 1 micron could adversely affect filtration within the Actinide Removal Project (ARP).

The authors conducted dead-end filtration testing with 0.45 micron polymeric filter media, 0.5 micron Mott sintered stainless steel filter media, and 0.1 micron Mott sintered stainless steel filter media. The conclusions from this test follow.

- If a 0.5 micron Mott filter is used for the ARP process, the Blue Grass Chemical Specialties MST will filter more slowly than the Optima 00-QAB-417 MST.
- If a 0.1 micron Mott filter is used for the ARP process, there is no difference between the filterability of the Blue Grass Chemical Specialties MST and the Optima 00-QAB-417 MST.
- The reason for the differing conclusions with the different filters is that the Blue Grass MST contains more fine particles (< 0.6 micron). The fines become trapped in the pores of the 0.5 micron filter media, but not in the pores of the 0.1 micron filter.

The authors make the following recommendations for MST particle size.

- If a 0.5 micron Mott filter is used for the ARP process, the existing particle size specification (less than 1% of particles less than 1 micron and less than 1% of particles greater than 35 micron) should be maintained.
- If a 0.1 micron Mott filter is used for the ARP process and the existing particle size specification is not met, DWPF personnel should arrange for filter tests, such as those described in this report, to be performed to evaluate the filterability of the MST.
- DWPF personnel should consider revising the particle size specification, because technology improvements allow better resolution of particles less than 1 micron. The limited data collected during this testing is not sufficient to change the particle size specification. Limited additional testing similar to that performed here would provide sufficient technical bases.

Introduction

The Savannah River Site (SRS) is developing a process to treat radioactive waste that is low in cesium-137, but high in strontium-90, plutonium, uranium, and neptunium. The process is the Actinide Removal Process located in Building 512-S.

This process adds MST to high level waste supernate. The MST sorbs soluble strontium, plutonium, uranium, and neptunium. The process then filters the resulting slurry, which contains entrained metal hydroxide sludge and MST, to remove the insoluble solids. Operations next
washes the concentrated solids to reduce the sodium and nitrite concentrations, and transports the slurry to the DWPF for vitrification. The filtrate flows to Z-area for disposal in a cement-based waste form.

The design specification for MST requires that less than 1 volume % of the particles are larger than 35 micron and less than 1 volume % of the particles are smaller than 1 micron. Blue Grass Chemical Specialties (New Albany, IN) produced two batches of MST that do not meet the particle size specification (see Appendix A). The material has more than 1% of the particles smaller than 1 micron. This increase in the fraction of particles less than 1 micron could adversely affect filtration within the ARP. The Blue Grass MST did meet the strontium decontamination factor specification.

The particle size data in Appendix A also shows that the Optima batch# 00-QAB-417 MST did not meet the particle size specification. That sample had 12 volume % of its particles less than 1 micron. The MST particle size specification derives in part from measurements performed with earlier Microtrac instruments that have no resolution below 1 micron. The measurements described in Appendix A came from a Microtrac S3000, which can measure particles as small as 0.34 micron. Previous measurements of this batch with a Microtrac showed ~ 2 volume % of the particles less than 1 micron. In addition, SRTC conducted a number of filtration tests with the Optima batch# 00-QAB-417 MST, with the results used to calculate throughput for the 512-S filter. Thus, Optima MST is viewed as acceptable for Operations.

The Kozeny-Carman model provides a simple description of colloidal fouling of microfilters. The model is described by equation [1]

\[J = \left(-\frac{\Delta P}{L} \right) \left[\frac{d_p^2 \varepsilon^3}{150 \mu (1-\varepsilon)^2} \right] \]

where \(J \) is the filter flux, \(\Delta P \) is the transmembrane pressure, \(L \) is the cake thickness plus the filter thickness, \(d_p \) is the particle diameter, \(\varepsilon \) is the filter cake porosity, and \(\mu \) is viscosity. According to equation [1], if all other parameters remain constant, a decrease in particle diameter will decrease the filter flux. Therefore, MST with more fines will likely produce lower filter flux than MST that meets the particle size specification.

DWPF personnel requested the authors to conduct bench-scale dead-end filtration tests with the following batches of MST to determine whether the Blue Grass MST will produce adequate filter flux:

- Optima Batch# 00-QAB-417
- Blue Grass Lot# 2753
- Blue Grass Lot# 2753 reworked
- Optima batch 33180 (control used in previous MST filtration tests)

The authors conducted dead-end filtration testing with 0.45 micron polymeric filter media, 0.5 micron Mott sintered stainless steel filter media, and 0.1 micron Mott sintered stainless steel filter media. The results of the dead-end filtration testing provide insight into the expected performance from cross flow filtration. They have used this approach in previous SRTC work.
Based on the testing results, SRTC will recommend a procurement specification for acceptable MST particle size range for use with both 0.5 micron and 0.1 micron stainless steel filter media.

Testing

Table 1 shows the feed solution for these tests. SRTC personnel have used this feed recipe in previous tests to mimic the expected SRS high level waste supernate composition. The feed contains 5.6 M sodium salt solution with 0.55 g/L MST added.

Table 1. Feed Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH</td>
<td>1.33 M</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>2.60 M</td>
</tr>
<tr>
<td>NaAl(OH)₄</td>
<td>0.43 M</td>
</tr>
<tr>
<td>NaNO₂</td>
<td>0.13 M</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>0.52 M</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>0.026 M</td>
</tr>
<tr>
<td>MST</td>
<td>0.55 g/L</td>
</tr>
</tbody>
</table>

The authors performed the tests with a bench-scale dead-end vacuum filter, a bench-scale dead-end filter, and a stirred cell filtration unit. The dead-end vacuum filter (see Figure 1) tests were conducted as follows. Personnel placed a sample of 5.6 M Na salt solution containing MST in a carboy and stirred it with a magnetic stirrer. Personnel then poured the salt solution (~100 mL) into the top of a graduated 115 mL capacity, 0.45 µm pore-size Nalgene disposable dead-end filter (Cat. No. 245-0045) connected to a vacuum pump. They started the pump (620 mm Hg vacuum) and measured the filtrate volume as a function of time.

Figure 1. Dead-End Nalgene Vacuum Filter
The bench-scale dead-end filter (see Figure 2) tests were conducted as follows. Personnel placed a sample of 5.6 M Na salt solution containing MST in a carboy and stirred it with a magnetic stirrer. Personnel then poured the salt solution (~100 mL) into the filter unit connected to a vacuum pump. They started the pump (620 mm Hg vacuum) and measured the filtrate volume as a function of time. The media for these tests was 0.5 micron Mott sintered stainless steel filters.

![Figure 2. Dead-End Mott Filter](image)

The stirred cell (see Figure 3) tests were conducted as follows. Personnel placed a sample of 5.6 M Na salt solution containing MST in a carboy and stirred it with a magnetic stirrer. Personnel then poured the salt solution (~60 mL) into the stirred cell. They agitated the cell contents, pressurized the cell (~ 30 psi), and measured the filtrate volume as a function of time. The media for these tests was 0.1 micron Mott sintered stainless steel filters.

Table 2 shows results from previous filter tests, which filtered feed slurries with 0.45 micron Nalgene dead-end vacuum filters and with a 0.5 micron Mott crossflow filter. The results show the dead-end filter fluxes correlate well with crossflow filter fluxes, and the dead-end filter serves as a useful screening tool to evaluate the impact of changes in feed composition on crossflow filter flux.
Figure 3. Stirred Cell Filter Unit

Table 2. Comparison of Dead-End Filter Results with Crossflow Filter Results5,6

<table>
<thead>
<tr>
<th>Feed</th>
<th>Relative Filtration Rate</th>
<th>Relative Filtration Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (6.4 M Na, 0.6 g/L sludge, 0.55 g/L MST)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Baseline + Bentonite</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Baseline + SRTC1*</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Baseline + SRTC2*</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>KTPB* (4 wt.%)</td>
<td>3.2</td>
<td>2.8</td>
</tr>
<tr>
<td>KTPB* (10 wt.%)</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

* SRTC1 and SRTC2 are proprietary flocculating agents. KTPB is potassium tetraphenylborate

Results

Figures 4 – 6 and Table 3 show the test results. The different colors represent repeat measurements. The filtrate rate was approximately the same in all tests with the 0.45 micron Nalgene filters. Statistical analyses performed showed no correlation between MST source and filtrate rate (see Appendix B).

The filtrate rate was approximately the same in all tests with the 0.1 micron Mott filters. Statistical analyses performed showed no correlation between MST source and filtrate rate (see Appendix B).

In all tests with the 0.5 micron Mott filters, statistical analyses performed showed a correlation between MST source and filtrate rate (see Appendix B). The Blue Grass MST filtered more
slowly than the Optima 00-QAB-417 MST, but filtered at approximately the same rate as the Optima 33180 MST.

![Graph](image1)

Figure 4. 0.45 Micron Nalgene Filter Test Results

![Graph](image2)

Figure 5. 0.5 Micron Mott Filter Test Results

The results appear to give conflicting conclusions. With the 0.45 micron Nalgene filters and the 0.1 micron Mott filters, no difference was observed in the filtration rates with the Optima and Blue Grass MST. With the 0.5 micron Mott filters, a significant difference was observed in the filtration rates with the Optima and Blue Grass MST.

The reason for the difference is the Blue Grass MST contains more fines than the Optima MST. The Optima 00-QAB-417 sample had 0.18 volume % of its particles less 0.5 micron, 0.80 volume % less than 0.6 micron, and 2.2 volume % less than 0.7 micron. The original Blue Grass MST had 0.51 volume % of its particles less 0.5 micron, 1.2 volume % less than 0.6 micron, and...
2.3 volume % less than 0.7 micron. The reworked Blue Grass MST had 0.34 volume % of its particles less 0.5 micron, 2.2 volume % less than 0.6 micron, and 6.1 volume % less than 0.7 micron. The Blue Grass MST samples contain a larger fraction of particles less than 0.5 micron and 0.6 micron than the Optima 00-QAB-417 sample. The fine particles become trapped in the pores of the 0.5 micron filter, but not in the pores of the 0.1 micron filter.

![Bar chart showing filtrate rate results](chart.png)

Figure 6. 0.1 Micron Mott Filter Test Results

Table 3. Filtration Test Results

<table>
<thead>
<tr>
<th>Nalgene Filter</th>
<th>Optima QAB-417</th>
<th>Blue Grass</th>
<th>Blue Grass Rework</th>
<th>Optima 33180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Filtrate Rate (ml/s)</td>
<td>2.24</td>
<td>2.50</td>
<td>2.15</td>
<td>2.27</td>
</tr>
<tr>
<td>Standard Deviation (%)</td>
<td>11%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.5 Micron Mott</th>
<th>Optima QAB-417</th>
<th>Blue Grass</th>
<th>Blue Grass Rework</th>
<th>Optima 33180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Filtrate Rate (ml/s)</td>
<td>1.78</td>
<td>0.64</td>
<td>0.71</td>
<td>0.67</td>
</tr>
<tr>
<td>Standard Deviation (%)</td>
<td>11%</td>
<td>3%</td>
<td>6%</td>
<td>10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.1 Micron Mott</th>
<th>Optima QAB-417</th>
<th>Blue Grass</th>
<th>Blue Grass Rework</th>
<th>Optima 33180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Filtrate Rate (ml/s)</td>
<td>0.25</td>
<td>0.23</td>
<td>0.28</td>
<td>0.29</td>
</tr>
<tr>
<td>Standard Deviation (%)</td>
<td>13%</td>
<td>19%</td>
<td>9%</td>
<td>9%</td>
</tr>
</tbody>
</table>

The Optima 33180 sample has the same fraction of fines (< 1 µ, < 0.7 µ, 0.6 µ, 0.5 µ) as the Optima 00-QAB-417 MST, but performs similarly to the Blue Grass MST with the 0.5 µ filter. The 33180 sample has more particle size variability and a stronger bimodal distribution than the 00-QAB-417 sample. This difference could produce a cake with lower permeability than the 00-QAB-417 sample, but one would expect to observe this effect with all of the filters tests. We are uncertain of the reason the 33180 filtered more slowly than the 00-QAB-417 sample, and this result remains an open issue.
Conclusions

The conclusions from this test follow.

- If a 0.5 micron Mott filter is used for the ARP process, the Blue Grass Chemical Specialties MST will filter more slowly than the Optima 00-QAB-417 MST.
- If a 0.1 micron Mott filter is used for the ARP process, there is no difference between the filterability of the Blue Grass Chemical Specialties MST and the Optima 00-QAB-417 MST.
- The reason for the differing conclusions with the different filters is that the Blue Grass MST contains more fine particles (< 0.6 micron). The fines become trapped in the pores of the 0.5 micron filter media, but not in the pores of the 0.1 micron filter.

References

Table A.1 Characterization of MST Samples13,14

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Optima #33180</th>
<th>Optima #00-QAB-417</th>
<th>Bluegrass Original</th>
<th>Bluegrass Reworked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr DFa</td>
<td>212 (31)</td>
<td>186 (2.8)</td>
<td>236 (25)</td>
<td>nd</td>
</tr>
<tr>
<td>Particle Sizeb: < 1 μm</td>
<td>13 (0.028)</td>
<td>12 (0.071)</td>
<td>6.1 (0.049)</td>
<td>16 (1.0)</td>
</tr>
<tr>
<td>Particle Sizeb: > 35.5 μm</td>
<td>0.46 (0.16)</td>
<td>0.84 (0.085)</td>
<td>3.5 (0.89)</td>
<td>0</td>
</tr>
<tr>
<td>Particle Sizeb: < 0.5 μm</td>
<td>0.17</td>
<td>0.18</td>
<td>0.51</td>
<td>0.34</td>
</tr>
<tr>
<td>Particle Sizeb: < 0.6 μm</td>
<td>0.73</td>
<td>0.80</td>
<td>1.22</td>
<td>2.16</td>
</tr>
<tr>
<td>Particle Sizeb: < 0.7 μm</td>
<td>2.15</td>
<td>2.22</td>
<td>2.28</td>
<td>6.06</td>
</tr>
</tbody>
</table>

a DF = decontamination factor = Initial Solution Concentration/Final Solution Concentration numbers in parenthesis are single standard deviation of duplicate sample results.

nd = not determined

b measured in deionized distilled water using MicrotracTM analyzer Model #S3000. Units are vol. %.

Figure A.1 provides plots of the volume % versus particle size for the Optima and Bluegrass samples reported in Table A.1. For clarity the graph shows only one of the two measurements performed using a MicrotracTM Model #S3000 unit.

Figure A.1 Particle Size of MST Samples

![Particle Size of MST Samples](image-url)
Appendix B
Statistics

Oneway Analysis of Nalgene Filter Data

Oneway Anova
Summary of Fit
Rsquare 0.447482
Adj Rsquare 0.26331
Root Mean Square Error 0.277557
Mean of Response 2.213077
Observations (or Sum Wgts) 13

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F
MST 3 0.5615353 0.187178 2.4297 0.1323
Error 9 0.6933417 0.077038
C. Total 12 1.2548769

Means for Oneway Anova
Level Number Mean Std Error Lower 95% Upper 95%
33180 3 2.26667 0.16025 1.9042 2.6292
BG 3 2.50000 0.16025 2.1375 2.8625
BG-reworked 4 1.93750 0.13878 1.6236 2.2514
QAB-417 3 2.24000 0.16025 1.8775 2.6025

Std Error uses a pooled estimate of error variance
Tests that the Variances are Equal
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
33180 3 0.0971253 0.0711111 0.0833333
BG 3 0.0800000 0.0533333 0.0800000
BG-reworked 4 0.4215349 0.3137500 0.2275000
QAB-417 3 0.2535744 0.1933333 0.1800000

Test F Ratio DFNum DFDen Prob>F
O'Brien[.5] 0.7712 3 9 0.5386
Brown-Forsythe 0.3153 3 9 0.8141
Levene 2.8298 3 9 0.0988
Bartlett 1.9670 3 0.1165

Warning: Small sample sizes. Use Caution.
Welch Anova testing Means Equal, allowing Std Devs Not Equal

F Ratio DFNum DFDen Prob>F
4.1922 3 4.7046 0.0839
Oneway Analysis of 0.5 Micron Mott Filter Data

Oneway Anova
Summary of Fit
Rsquare 0.968976
Adj Rsquare 0.957341
Root Mean Square Error 0.10496
Mean of Response 0.951667
Observations (or Sum Wgts) 12

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F
MST 3 2.7526333 0.917544 83.2869 <.0001
Error 8 0.0881333 0.011017
C. Total 11 2.8407667

Means for Oneway Anova
Level Number Mean Std Error Lower 95% Upper 95%
33180 3 0.67333 0.06060 0.5336 0.8131
BG 3 0.64000 0.06060 0.5033 0.7797
BG-reworked 3 0.71333 0.06060 0.5736 0.8531
QAB-417 3 1.78000 0.06060 1.6403 1.9197
Std Error uses a pooled estimate of error variance
Tests that the Variances are Equal
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
33180 3 0.060666 0.0511111 0.0533333
BG 3 0.0200000 0.0133333 0.0200000
BG-reworked 3 0.0416333 0.0311111 0.0333333
QAB-417 3 0.1931321 0.1400000 0.1700000
Test F Ratio DNum DDen Prob>F
O'Brien[5] 1.5577 3 8 0.2736
Brown-Forsythe 8.1069 3 8 0.0083
Levene 4.2024 3 8 0.0464
Bartlett 2.6547 3 . 0.0468
Warning: Small sample sizes. Use Caution.
Welch Anova testing Means Equal, allowing Std Devs Not Equal
F Ratio DNum DDen Prob>F
26.9162 3 3.8437 0.0048
Oneway Analysis of 0.1 Micron Mott Filter Data

Oneway Anova
Summary of Fit
Rsquare Adj Rsquare Root Mean Square Error Mean of Response Observations (or Sum Wgts)
0.479013 0.283643 0.032853 0.263167 12

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F
MST 3 0.00793900 0.002646 2.4518 0.1381
Error 8 0.00863467 0.001079
C. Total 11 0.01657367

Means for Oneway Anova
Level Number Mean Std Error Lower 95% Upper 95%
33180 3 0.290667 0.01897 0.24693 0.33441
BG 3 0.227000 0.01897 0.18326 0.27074
BG-reworked 3 0.284000 0.01897 0.24026 0.32774
QAB-417 3 0.251000 0.01897 0.20726 0.29474

Std Error uses a pooled estimate of error variance

Tests that the Variances are Equal
Level Count Std Dev MeanAbsDif to Mean MeanAbsDif to Median
33180 3 0.0266333 0.0195556 0.0226667
BG 3 0.0439204 0.0313333 0.0400000
BG-reworked 3 0.0262298 0.0186667 0.0240000
QAB-417 3 0.0314802 0.0233333 0.0260000

Test F Ratio DNum DFDen Prob>F O'Brien[5] 0.4256 3 8 0.7401
Brown-Forsythe 1.3466 3 8 0.3263
Levene 0.4293 3 8 0.7376
Bartlett 0.2068 3 . 0.8918

Warning: Small sample sizes. Use Caution.
Welch Anova testing Means Equal, allowing Std Devs Not Equal

F Ratio DNum DFDen Prob>F
1.6835 3 4.3871 0.2973