Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy

PDF Version Also Available for Download.

Description

An attractive feature of the inertial fusion energy (IFE) approach to commercial energy production is that the fusion driver is well separated from the fusion confinement chamber. This ''standoff'' feature means the driver is largely isolated from fusion reaction products. Further, inertial confinement fusion (ICF) target ignition (with modest gain) is now scheduled to be demonstrated at the National Ignition Facility (NIF) using a laser driver system. The NIF program will, to a considerable extent, validate indirectly-driven heavy-ion fusion (HIF) target designs for IFE. However, it remains that HIF standoff between the final focus system and the fusion target needs ... continued below

Physical Description

10 pages

Creation Information

Herrmannsfeldt, W.B.; Bangerter, R.O.; Fessenden, T.J.; Lee, E.P.; Yu, S.S.; Olson, C.L. et al. February 6, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An attractive feature of the inertial fusion energy (IFE) approach to commercial energy production is that the fusion driver is well separated from the fusion confinement chamber. This ''standoff'' feature means the driver is largely isolated from fusion reaction products. Further, inertial confinement fusion (ICF) target ignition (with modest gain) is now scheduled to be demonstrated at the National Ignition Facility (NIF) using a laser driver system. The NIF program will, to a considerable extent, validate indirectly-driven heavy-ion fusion (HIF) target designs for IFE. However, it remains that HIF standoff between the final focus system and the fusion target needs to be seriously addressed. In fact, there now exists a timely opportunity for the Office of Fusion Energy Science (OFES) to experimentally explore the feasibility of one of the attractive final transport options in the fusion chamber: the self-pinched transport mode. Presently, there are several mainline approaches for HIF beam transport and neutralization in the fusion chamber. These range from the (conservative) vacuum ballistic focus, for which there is much experience from high energy research accelerators, to highly neutralized ballistic focus, which matches well to lower voltage acceleration with resulting lower driver costs. Alternatively, Z-discharge channel transport and self-pinched transport in gas-filled chambers may relax requirements on beam quality and final focusing systems, leading to even lower driver cost. In any case, these alternative methods of transport, especially self-pinched transport, are unusually attractive from the standpoint of chamber design and neutronics. There is no requirement for low chamber pressure. Moreover, only a minuscule fraction of the fusion neutrons can escape from the chamber. Therefore, it is relatively easy to shield sensitive components, e-g., superconducting magnets from any significant neutron flux. Indeed, self-pinched transport and liquid wall protection endow DT fusion with many of the advantages of aneutronic fusion. The question is: will self-pinched transport work? Early theoretical studies indicated that self-pinched transport was not an option because net currents established in gas during beam injection were too small to cause beam pinching. However, recent numerical simulations using the 3D hybrid code IPROP3, including the effects of non-local ionization, indicate that self-pinched transport may be possible. The capability to test the concept exists today in scaled experiments using a high-current focused proton beam produced by the Gamble II pulsed-power accelerator at the Naval Research Laboratory. This White Paper describes the implications of the self-pinched transport approach to HIF power plant design and the relevance of proton experiments designed to test the concept. Near-term experiments and analysis are also suggested.

Physical Description

10 pages

Notes

OSTI as DE00840211

Source

  • Other Information: PBD: 6 Feb 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--41375
  • Report No.: HIFAN 936
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/840211 | External Link
  • Office of Scientific & Technical Information Report Number: 840211
  • Archival Resource Key: ark:/67531/metadc782027

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 6, 1998

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 4, 2016, 4:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Herrmannsfeldt, W.B.; Bangerter, R.O.; Fessenden, T.J.; Lee, E.P.; Yu, S.S.; Olson, C.L. et al. Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy, report, February 6, 1998; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc782027/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.