A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL

PDF Version Also Available for Download.

Description

Gas Technology Institute is developing a novel concept of membrane gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. To evaluate the performances of the candidate ... continued below

Physical Description

31 pages

Creation Information

Doong, Shain; Ong, Estela; Atroshenko, Mike; Lau, Francis & Roberts, Mike October 26, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Gas Technology Institute is developing a novel concept of membrane gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. To evaluate the performances of the candidate membranes under the gasification conditions, a high temperature/high pressure hydrogen permeation unit has been constructed in this project. The unit is designed to operate at temperatures up to 1100 C and pressures to 60 atm for evaluation of ceramic membranes such as mixed ionic conducting membrane. The unit was fully commissioned and is operational. Several perovskite membranes based on the formulations of BCN (BaCe{sub 0.8}Nd{sub 0.2}O{sub 3-x}) and BCY (BaCe{sub 0.8}Y{sub 0.2}O{sub 3-x}) were prepared by GTI and tested in the new permeation unit. These membranes were fabricated by either uniaxial pressing or tape casting technique with thickness ranging from 0.2 mm to 0.7 mm. Hydrogen permeation data for the BCN perovskite membrane have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar. The highest hydrogen flux was measured at 1.6 STPcc/min/cm{sup 2} at a hydrogen feed pressure of 12 bar and 950 C with a membrane thickness of 0.22 mm. A membrane gasification reactor model was developed to consider the H{sub 2} permeability of the membrane, the kinetics and the equilibriums of the gas phase reactions in the gasifier, the operating conditions and the configurations of the membrane reactor. The results show that the hydrogen production efficiency using the novel membrane gasification reactor concept can be increased by about 50% versus the conventional gasification process. This confirms the previous evaluation results from the thermodynamic equilibrium calculation. A rigorous model for hydrogen permeation through mixed proton-electron conducting ceramic membranes was also developed based on non-equilibrium thermodynamics. The hydrogen flux predicted from the modeling results are in line with the data from the experimental measurement. The simulation also shows that the presence of steam in the permeate side or the feed side of the membrane can have a small negative effect on the hydrogen flux, in the order of 10%.

Physical Description

31 pages

Notes

OSTI as DE00835003

Source

  • Other Information: PBD: 26 Oct 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-03NT41851
  • DOI: 10.2172/835003 | External Link
  • Office of Scientific & Technical Information Report Number: 835003
  • Archival Resource Key: ark:/67531/metadc781928

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 26, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 4, 2017, 1:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Doong, Shain; Ong, Estela; Atroshenko, Mike; Lau, Francis & Roberts, Mike. A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL, report, October 26, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc781928/: accessed July 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.