Improved Refractories for Slagging Gasifiers in IGCC Power Systems

PDF Version Also Available for Download.

Description

The gasification of coal and other carbon-containing fuels provides the opportunity to produce energy more efficiently, and with significantly less environmental impact, than more-conventional combustion-based processes. In addition, the synthesis gas that is the product of the gasification process offers the option of ''polygeneration,'' i.e., the production of alternative products instead of power should it be economically favorable to do so. Because of these advantages, gasification is viewed as one of the key processes in the U.S. Department of Energy's Vision 21 power system. However, issues with both the reliability and the economics of gasifier operation will have to be ... continued below

Creation Information

Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P. & Chinn, Richard E. April 24, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Albany Research Center
    Publisher Info: Albany Research Center, Albany, OR (United States)
    Place of Publication: Albany, Oregon

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The gasification of coal and other carbon-containing fuels provides the opportunity to produce energy more efficiently, and with significantly less environmental impact, than more-conventional combustion-based processes. In addition, the synthesis gas that is the product of the gasification process offers the option of ''polygeneration,'' i.e., the production of alternative products instead of power should it be economically favorable to do so. Because of these advantages, gasification is viewed as one of the key processes in the U.S. Department of Energy's Vision 21 power system. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both enhanced reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous, trouble-free gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center is to develop improved refractory materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction, and includes both the refractory lining that protects and insulates the slagging gasifier, as well as the thermocouple assemblies that are utilized to monitor gasifier operating temperatures. Current generation refractory liners in slagging gasifiers are typically replaced every four to 18 months, at costs ranging up to $2,000,000, depending upon the size of the gasification vessel. Compounding materials and installation costs are the lost-opportunity costs for the time that the gasifier is off-line for the refractory exchange. Current generation thermocouple devices rarely survive the gasifier start-up process, leaving the operator with no real means of temperature measurement during routine operation. Reliable, efficient, and economical gasifier operation that includes the 90 to 95% on-line availability desired by the industry clearly requires improvements in refractory liner materials and in thermocouple protection strategies. As a result, the goals of this project include the development of a refractory liner with a service life at least double that of current generation refractory materials, and the design of a thermocouple protection system that will allow accurate temperature monitoring for extended periods of gasifier operation.

Source

  • 17th Annual Conference on Fossil Energy Materials, Baltimore, MD (US), 04/22/2003--04/24/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ARC-2003-010
  • Office of Scientific & Technical Information Report Number: 835687
  • Archival Resource Key: ark:/67531/metadc781915

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 24, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • March 7, 2016, 12:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P. & Chinn, Richard E. Improved Refractories for Slagging Gasifiers in IGCC Power Systems, article, April 24, 2003; Albany, Oregon. (digital.library.unt.edu/ark:/67531/metadc781915/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.