PROGRESS IN HEAVY ION DRIVEN INERTIAL FUSION ENERGY: FROM SCALED EXPERIMENTS TO THE INTEGRATED RESEARCH EXPERIMENT

J. J. Barnard³, L. E. Ahle¹, D. Baca², R. O. Bangerter², F. M. Bieniosek², C. M. Celata², E. Chacon-Golcher², R. C. Davidson³, A. Faltens², A. Friedman¹, R.M. Franks², D. P. Grote¹, I. Haber², E. Henestroza², M. J. L. de Hoon², I. Kaganovich³, V. P. Karpenko¹, R. A. Kishik³, J. W. Kwan², E. P. Lee², B. G. Logan¹, S.M. Lund¹, W. R. Meier¹, A. W. Molvik¹, C. Olson², L.R. Prost², H. Qin³, D. Rose⁶, G-L. Sabbi², T. C. Sangster¹, P. A. Seidl², W. M. Sharp¹, D. Shuman², J.L. Vay², W.L. Waldron², D. Welch⁶, S.S. Yu²

Abstract

The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (~100's Amperes/beam) and ion energies (~1 - 10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned.

Figure 1. Schematic of the stages and beam manipulations required in a Heavy Ion Fusion driver.

* This work was performed under the auspices of the U.S. Department of Energy under University of California contract W-7405-ENG-48 at LLNL, and University of California contract DE-AC03-76SF00098 at LBNL, and PPPL contract
Inertial fusion energy targets require deposition of beam energy onto small spots, 2 to 5 mm in radius at the ends of a hohlraum (indirect drive) or onto a spherical capsule (direct drive). The most detailed radiation/hydrodynamical simulations of heavy ion targets have been done for hohlraums in which the ions deposit their energy in converters which radiate their energy in x-rays, and the x-rays impinge on capsules ablating and compressing them[1]. The total pulse energy required is ~3 to 7 MJ, with a pulse duration of ~8-10 ns. The ion range required by the target is ~0.02 to 0.20 g/cm², which implies an ion energy of between ~1 to 10 GeV for ion masses between ~80 and 200. Final ion currents between 30 and 900 kA, are thus needed to meet the pulse energy requirement. The high currents are achieved by compressing the beam length by a factor of order 20, so initial line charge densities between 15 and 900 µC/m are required. Quadrupole channels can transport a fraction of a µC/m at typical injection energies. Comparing what is required at the target with the transportable current illustrates the need for multiple beams (10’s to 100’s). Figure 1 illustrates the manipulations envisioned in a heavy ion fusion driver. Injection of multiple beams, electric transport, a possible merge before magnetic transport, drift compression, beam bending, final focusing, and neutralized chamber transport are all manipulations that are being envisioned for a heavy ion fusion driver.

The issues facing HIF can be broadly classified into two main groups: cost and focussability. The cost issue is continually being addressed through technology development projects required for the near term experiments (such as superconducting magnets, induction core materials, and insulators.) System studies are also used to determine high leverage items affecting the overall cost of electricity.

The main scientific issue is focussability on the target. There are two main components which act to prevent focussability at the target:

1. Space charge: Because currents are large, and because the chamber environment is envisioned to be filled with residual gas at the millitorr level, the mainline approach is to ionize the gas at it enters the target chamber, and to utilize the photoionization of the chamber gas by the beam heated target X-rays. In both cases, the beam will draw electrons into its path to neutralize the space charge. Experiments and calculations are validating this picture.

2. Insufficient brightness: Over most of the beam path through the accelerator, economics dictates that space charge forces be much greater than thermal forces. At the target when the beam is focused down to a small spot thermal forces dominate (particularly when the beam is neutralized.) It is thus important to maintain low emittance beams throughout, even when the emittance is not dynamically important. By making small intense beams, target energy requirements can be reduced implying smaller, cheaper accelerators. So there is a big impact for getting the absolute brightest beams possible.
entrance into a magnetic final focus system and a spot size consistent with space charge and emittance was produced. In a later version of the experiment a heated wire filament was placed in the beam path supplying the beam with neutralizing electrons. Simulations using the LSP code agreed well with the experiment [8].

Other scaled experiments include an adiabatic plasma lens [9], a channel transport experiment [9] and others [10], including the University of Maryland electron beam experiments [11], which are highly relevant to HIF.

Some of the HIF scaled experiments (past, present, and future) are summarized in Table 1. From Table 1, it can be seen that nearly every major manipulation required in an HIF driver, has been carried out, at some level, in the scaled experiments.

2.2 Driver Scale Experiments

Presently, the HIF program is developing experiments in which the line charge density of the beam is at or near that expected for the early phase of a driver accelerator. Line charge density is important, because it determines the space charge potential drop of the beam from center to the pipe radius, and hence the confining potential for both unwanted electrons (in the accelerator) and wanted electrons (in the chamber). Hence, the present program is examining the science of beam propagation of “driverscale” beams.

One of the main focuses of the program over the next two years is the High Current experiment (HCX) [12]. The first phase of the experiment is to transport a driver scale “beam” from beam center to pipe radius will be ~5 keV. The first phase of the experiment is to transport a driver scale “beam.” Hence, the present program is examining the science of beam propagation of “driverscale” beams.

The beam filling factor \(\frac{r_{beam}}{r_{pipe}} \) is important for obtaining a cost optimized accelerator, and understanding the evolution of the emittance has strong implications for the target, and thus on overall cost. So the first phase of HCX will be to assess how close the beam can come to the pipe, by observing emittance growth, halo formation, and beam loss. The beam radius will be altered by changing the quadrupole voltages and by changing the current. The question of optimum steering will be addressed, and the rate of electron production and entrainment will be examined. The role of desorbed atoms, born from beam halo particles hitting the walls or from ionized residual gas atoms accelerated by the beam space charge towards the wall, will be assessed. Pulse duration limits (within the bounds of the experiment) from head particle loss effecting tail propagation will be explored.

Phase 1 will use the existing ESQ injector and matching section (which reduces the radius of the beam out of the diode and injector, and transform from a circular to an elliptical beam). This will be followed by four 10 quad blocks. At the beginning of each block there will be a quad which slides out of the way, so that diagnostics such as slit-scanners, or pepper-pots can be inserted into the beam path. Further, two of the quads in each 10 quad block can be displaced in x and y producing a dipole component, allowing steering experiments that place the beam closer to the wall. The first four quads in each block allow independent control of the voltages on each quad, so that the beam can be rematched if necessary, or envelope oscillations intentionally induced to examine halo production. Finally, one quad in each block can be intentionally rotated by up to a few degrees to look at the skew effects on envelope and emittance.

Many simulations have been carried out in support of both the phase I and phase II HCX [12], [13]. Examples include WARP code simulations of the non-linear multipole fields intrinsic to the prototype superconducting magnets, imperfectly aligned quadrupoles with small but finite rotation angles and beam displacements, and finite rotation angles and beam displacements.
initial displacements of the beam, and finite initial mismatches.

Several magnets are being designed for use in the HCX, (with the technology developed highly relevant to future accelerators including the Integrated Research Experiment). An array of 21 pulsed normal magnets was designed and an array, which included 4 of these magnets, has been pulsed approximately 80,000 times. Pulsed magnets would not be used in a driver (because the overall efficiency of the accelerator would not be acceptable for a power plant application) but because of the cost advantage over superconducting magnets, pulsed magnets may be of value in an IRE or nearer-term experiment.

Two superconducting prototypes have been developed [14]. Both have circular apertures and square outer cross section, which would make them easily adaptable into a multi-beam array. One magnet uses rectangular Rutherford cables in a racetrack configuration, of two layers, whereas the second group uses six layers of circular cables placed into grooves in a plastic matrix. Both prototypes have reached at least 90% of their theoretical maximum gradient, which is well above the requirements for the HCX. A down select will be made within a year.

The existing ESQ (which will be the front end to the HCX) has been found to have a current density distribution which is peaked near the edges at the exit of the injector [15]. The cause appears to be spherical aberration, and reduction of the radius of the source from 8.5 cm to 5 cm and modifications to the extraction electrode, have, in simulations reduced the nonuniformity and have produced a more elliptical beam shape.

The other major VNL HIF experimental research project is design of a cost-effective injector. As pointed out earlier, multiple beams are required to transport the total charge required by the target. One way of doing this is to make a large diameter source that matches the maximum current limit of the ESQ transport channel. The ESQ Injector [17] is an example of this approach.

Another method, now being considered [18], is to merge hundreds of mm-scale beamlets into a single macro-beam. (There would still be tens to hundreds of macro-beams in the accelerator.) This merging beamlet approach has the potential to reduce both the transverse and longitudinal dimensions of a multi-beam injector. The Child-Langmuir law for a diode relates the current density J and voltage V across a gap of length d according to $J \sim V^{3/2}/d^2$. But breakdown voltages are proportional to d (for short distances [<~ 1 cm]) and roughly as $d^{3/2}$ (for larger distances [>~ 1 cm]). So $J \sim V^{3/2}$ (small d) or $J \sim V^{1/2}$ (large d). In either case the current density increases and the voltage decreases, whereas the total current goes as $V^{3/2}$ (since d scales with the radius of the source). The beam brightness ~ current/emittance2 ~ J/T, implying high current density translates to high brightness. Low V implies high current density but to get the required high current many beamlets (~100’s per beam) are required. This approach is being both simulated using WARP and explored experimentally using a new 500 kV source test stand, now being completed at LLNL [19] to test this concept and do general research on ion sources for HIF.

Because of the large radius of the low current density source, the beamlines in a multiple beam injector must converge, as they proceed from the source to the transport region. To bend the beam gradually, and lower the beam radius from source to transport region, a large distance longitudinally is required to match the beam to the ESQ transport channel. With the multiple beamlet approach all of the beams can feed directly into the transport, channel, reducing substantially both length and radius. Further the beams can start out elliptical, minimizing the matching manipulations, in the matching section. This would be especially attractive for an IRE, where the front end is a much larger fraction of the cost than it is for a driver.

The final VNL experiment, now in the design stage, is a “Neutral Transport Experiment” or NTX, the purpose of which is to examine neutralized final focus of higher perveance beams. (This has been designed to operate at the end of the MBE-4 or at the end of the High Current Experiment). The experiment consists of a number of magnetic quadrupoles that form the final focus, followed by a short drift, corresponding to propagation in the chamber. An rf source (now being readied at PPPL) ionizes the plasma, and so the effect of plasma at various locations within the chamber can be explored. This will be a flexible experiment allowing the experimental variation of plasma densities and gradients. Also, the large perveance planned for this experiment implies large final focusing angles, implying larger geometric aberrations. The question of whether octupoles can correct for the third order aberrations will be addressed experimentally on the NTX.

2.3 Next stage: Integrated Experiments

After the HCX, (or as part of the later stages of HCX) the program envisions a near term Integrated Beam Experiment (IBX) in which nearly all of the components of a driver are put into place. This would include injection, acceleration, longitudinal compression, and final focus, with a driver scale beam. The focus is on integration and validation. At the end of August a workshop will be held to try to systematically determine the science goals of IBX, and begin to scope out the accelerator parameters. The IBX will enable comparison of experimental data with source-to-target simulations, using WARP in the accelerator and LSP in the chamber.

The IBX will lay the ground work for the single final step between itself and a demonstration Inertial Fusion Energy test facility. That intermediate step is known as the Integrated Research Experiment (IRE).
The goals of the IRE go beyond just the understanding of high intensity beam physics [20]. The basic overriding principle is that together with the knowledge gained in the defense programs target physics program including the National Ignition Facility (NIF) and supporting technology programs, the IRE will give a basis to proceed to an IFE Engineering Test Facility. The areas of target physics (particularly those unique to ions [as opposed to lasers]) will begin being explored. (It is even possible that hydrodynamic motion during the initial “foot” phase of the pulse could be investigated.) Examination of a variety of chamber transport modes, including self-pinched modes, which are not accessible to the IBX, will be another major goal of the IRE. Further, chamber transport issues, particularly the interaction of beams with the liquid walls (Flibe) that are now favored to shield the solid walls of the target chamber will be a research goal of the IRE. These goals dictate the scale of the facility to be ~tenth scale of a driver in ion energy, and in the 30-300 kJ range in pulse energy.

In the mean time, our information about the IRE and drivers comes from simulations and theory. Recently there has been substantial progress made in simulations and theory of the accelerator, driver and drift compression section [21-25], as well as detailed simulations and theory of the chamber [26, 27], which include a number of plasma neutralization scenarios.

3. SUMMARY AND CONCLUSIONS

The Heavy Ion Fusion IFE program is transitioning from scaled experiments to experiments with beams that are driver scale in line charge density and pulse duration. The main scientific issues for the driver are: maintenance of high brightness beams and production and focusing of a highly neutralized beam in the chamber. WARP3D simulations of the accelerator and LSP simulations of the chamber, together with perturbative δf (BEST) simulations, theory and lower dimensional simulations, explore and validate physics of near-term experiments, mid-term IRE and further-term driver beams. The current experimental emphasis of the HIF program is on HCX, advanced injector concepts, and NTX Final Focus experiments, with the IBX and IRE to follow.

4 REFERENCES