Supernova/Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

PDF Version Also Available for Download.

Description

The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universes expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree ... continued below

Physical Description

vp.

Creation Information

Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C. et al. May 12, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universes expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy, including discrimination of vacuum energy due to the cosmological constant and various classes of dynamical scalar fields. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1 percent. For a flat universe, the density-to-pressure ratio of dark energy or equation of state w(z) can be similarly measured to 5 percent for the present value w0 and {approx} 0.1 for the time variation w' is defined as dw/d ln a bar z = 1. For a fiducial SUGRA-inspired universe, w0 and w' can be measured to an even tighter uncertainty of 0.03 and 0.06 respectively. Note that no external priors are needed. As more accurate theoretical predictions for the small-scale weak-lensing shear develop, the conservative estimates adopted here for space-based systematics should improve, allowing even tighter constraints. While the survey strategy is tailored for supernova and weak gravitational lensing observations, the large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs.

Physical Description

vp.

Source

  • Journal Name: Astrophysics; Journal Volume: 1; Journal Issue: 0405232; Other Information: Journal Publication Date: 05/12/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--55972
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 827970
  • Archival Resource Key: ark:/67531/metadc781747

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 12, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 4, 2016, 5:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C. et al. Supernova/Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy, article, May 12, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc781747/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.