Simulation study on effects of signaling network structure on the developmental increase in complexity

PDF Version Also Available for Download.

Description

The developmental increase in structural complexity in multicellular life forms depends on local, often non-periodic differences in gene expression. These depend on a network of gene-gene interactions coded within the organismal genome. To better understand how genomic information generates complex expression patterns, I have modeled the pattern forming behavior of small artificial genomes in virtual blastoderm embryos. I varied several basic properties of these genomic signaling networks, such as the number of genes, the distributions of positive (inductive) and negative (repressive) interactions, and the strengths of gene-gene interactions, and analyzed their effects on developmental pattern formation. The results show how ... continued below

Physical Description

vp.

Creation Information

Keranen, Soile V.E. April 2, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The developmental increase in structural complexity in multicellular life forms depends on local, often non-periodic differences in gene expression. These depend on a network of gene-gene interactions coded within the organismal genome. To better understand how genomic information generates complex expression patterns, I have modeled the pattern forming behavior of small artificial genomes in virtual blastoderm embryos. I varied several basic properties of these genomic signaling networks, such as the number of genes, the distributions of positive (inductive) and negative (repressive) interactions, and the strengths of gene-gene interactions, and analyzed their effects on developmental pattern formation. The results show how even simple genomes can generate complex non-periodic patterns under suitable conditions. They also show how the frequency of complex patterns depended on the numbers and relative arrangements of positive and negative interactions. For example, negative co-regulation of signaling pathway components increased the likelihood of (complex) patterns relative to differential negative regulation of the pathway components. Interestingly, neither quantitative differences either in strengths of signaling interactions nor multiple response thresholds to signal concentration (as in morphogen gradients) were essential for formation of multiple, spatially unique cell types. Thus, with combinatorial code of gene regulation and hierarchical signaling interactions, it is theoretically possible to organize metazoan embryogenesis with just a small fraction of the metazoan genome. Because even small networks can generate complex patterns when they contain a suitable set of connections, evolution of metazoan complexity may have depended more on selection for favourable configurations of signaling interactions than on the increase in numbers of regulatory genes.

Physical Description

vp.

Notes

OSTI as DE00837232

Source

  • Journal Name: Journal of Theoretical Biology; Journal Volume: 231; Journal Issue: 1; Other Information: Submitted to Journal of Theoretical Biology: Volume 231, No.1; Journal Publication Date: 11/07/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-52428
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 837232
  • Grant Number: GM 42387
  • Archival Resource Key: ark:/67531/metadc781644

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 2, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 22, 2016, 6:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Keranen, Soile V.E. Simulation study on effects of signaling network structure on the developmental increase in complexity, article, April 2, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc781644/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.