Intermediate Temperature SOFC Operation Using Lanthanum Gallate Electrolyte

S. Elangovan, S. Balagopal, J. Hartvigsen
M. Timper, and D. Larsen

SECA Core Technology Program Review
Tampa, FL
January 27, 2005
Work supported by US-DOE SBIR Phase II
Grant No. DE-F2-03-01ER83212
Present SOFC Electrolytes

<table>
<thead>
<tr>
<th>System</th>
<th>Electrolyte Issues</th>
<th>Anode Material and Issues</th>
<th>Cathode Material and Issues</th>
<th>General Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zirconia</td>
<td>Low conductivity 0.1 S/cm at 1000°C 0.02 S/cm at 800°C</td>
<td>Ni-zirconia Ni coarsening</td>
<td>La(Sr)MnO₃ zirconate formation at the interface</td>
<td>Demonstrated No electronic leak current 1000°C Operation typical; very thin electrolyte allows 800°C operation; lower than 800°C?</td>
</tr>
<tr>
<td>Ceria</td>
<td>High conductivity (0.1 S/cm at 800°C)</td>
<td>Ni-ceria</td>
<td>La(Sr)CoO₃ CTE mismatch</td>
<td>Electronic short Differential expansion from air to fuel side</td>
</tr>
<tr>
<td>La gallate</td>
<td>High conductivity (>0.1 S/cm at 800°C)</td>
<td>Ni-ceria Formation of La-Ni-O insulating phases</td>
<td>La(Sr)CoO₃ CTE mismatch</td>
<td>No electronic leak current CTE similar to zirconia Long term cell stability is an issue, strength, material cost</td>
</tr>
</tbody>
</table>
Conductivity Comparison

- Conductivity: LSGM at 650°C > YSZ at 800°C
Conductivity Comparison: LSGM and YSZ Electrolyte
Benefits of LSGM Electrolyte

- Stability in SOFC environment (air and fuel pO₂)
 - Ionic transference number ~1
- Potential for 650°C operation
 - Conductivity comparable to YSZ at 800 - 850°C
 - Compatibility with perovskite cathode
 - La(Sr)CoO₃₋ₓ, excellent cathode for 650°C operation
 - Metal interconnect challenges are reduced
 - Lower system cost
 - 650 - 700°C operation well-suited for partial internal reformation; offering a significant reduction in heat exchanger requirement
Challenges

Materials
- **Synthesis**
 - Phase Purity
- **Ceramic processing**
 - Densification
 - Thin layer fabrication
- **Strength**
- **Cost**

Fuel Cell
- **Anode material compatibility**
 - Reactivity with nickel
- **Cathode material**
- **Long-term stability**
- **Stack performance**
Synthesis

- **Multi-cation perovskite**
 - Preferred phase: La(Sr)Ga(Mg)O$_{3-\delta}$
 - Potential second phases: SrLaGaO$_4$ and SrLaGa$_3$O$_7$, La$_4$Ga$_2$O$_9$

- **Approach**
 - Precursor control
 - Milling / Calcination temperature
Process control: Phase pure LSGM

![Graph showing the phase pure LSGM](image-url)
Ceramic processing

- **Densification**
 - Sintering temperature (literature: 1450 - 1550°C for several hrs)
 - Reactivity with setters
 - Ga evaporation?
 - Control of powder characteristics (e.g. surface area) allows reduction in sintering temperature 1400 - 1450°C
 - Sintering aid
Sintering Study

Density of LSGM

- LSGM (attritor milled)
- LSGM (doped with 5 wt% LSGMC)
- LSGM (doped with 10 wt% LSGMC)
- LSGMC
- LSGM (phase 2 average)

Co doping on Mg-site

High surface area (~ 6 m²/gm)

Low surface area (~ 1 m²/gm)

Co doped LSGM as sintering aid
Thin LSGM electrolyte

- Multiple approaches to making thin LSGM electrolyte

- Tape cast support
- Screen printed electrolyte
- Tape cast laminated structure
Strength

- **Limited information in the literature**
 - 147 MPa (isopressed bar) Du et al.
 - 113 MPa Sammes et al.

- **Preliminary Result: 129 MPa**

- **Additional work done at Sandia National Lab.**
 (Raj Tandon and Ron Loehman)
LSGM Strength

![Graph showing the strength of LSGM under different conditions]

Strength, MPa

- RT test
- RT test after 800°C in air for 100 hrs.
- RT test after 800°C in reducing atm for 100 hrs.
- RT test after RT to 800°C in air, 10 cycles
- RT test after RT to 800°C in reducing, 10 cycles
- Test at 800°C

Sample Pretreatment
Test Conditions: 800 C exposure for 100 hr. in air, strength=168 MPa

Sample # T2 22

Failure origin appears to be a near surface defect
Strength test at 800 C in air; 132 MPa

Sample #T1-41

Failure origin appears to be a near surface defect
Summary of strength test

- Pores are still the major failure causing defects
- Exposure to high temperature in air - slight reduction in strength
- Exposure to high temperature in hydrogen - no change
- Thermal cycling in air - slight reduction
- Thermal cycling in hydrogen - increase in strength
- Test at high temperature - reduction in strength
- Process improvement in reducing flaws should improve strength
Anode material compatibility

- Reduce Ni reaction with modified anode composition

- Powder mixture (LSGM + modified anode) calcination at 1350°C for four hours
Cost

- Parametric cost estimate of raw material oxides
 (using USGS published cost of high purity oxides)
Single Cell Performance

- ASR at 700°C, thin LSGM supported on anode structure: ~ 0.5 ohm.cm²
Single cell long-term test

- Stable button cell performance (anode as support)

Temperature: 700°C
Current Density: 1 Amp/cm²

Cell: ASG_0080

Power Density, W/cm²

Time, Hours
Cathode as support

• Benefits
 - Materials compatibility - Perovskite electrolyte and cathode
 - Allows use of thin anode => high fuel utilization
 - No phase change from fabrication to operation compared to anode that undergoes reduction (associated volume shrinkage)
Cell Performance (Cathode Support)

- Electrolyte thickness 75 µm
Cathode supported cell

![Image](image_url)

Graph:
- **Closed symbols:** Air
- **Open symbols:** Oxygen

Current Density, A/cm²
- 750 = 0.54 ½.cm²
- 700 = 0.80 ½.cm²
- 650 = 1.39 ½.cm²
Performance Improvement

- 75 micron electrolyte
- Additional porosity in thick cathode structure
Single cell stability

- ASR at 700°C with thin LSGM supported on cathode structure: ~ 0.5 ohm.cm²
Cell Scale-up

- Tape cast development to fabricate 10 x 10 cm cells
Stack Test (10x10cm 8-Cells)
Stack test

Stack Voltage = 5 V
(0.625 V/cell)
Temperature = 800°C

- LSGM 8-cell Stack
- Electrolyte Size = 10 cm x 10 cm
- Electrolyte Thickness = 300 microns
- Active Area = 62 cm²

Fuel Interruption

Time, Hrs

Stack Power, W
Fuel Utilization, %
Stack post-test analysis

- Interaction of Cr from interconnect with Sr in cathode

![Cr map](image1)
![Sr map](image2)
Anode-Electrolyte Interface

- Post-test analysis (1200-hr test) did not show evidence of Ni diffusion
Summary

- LSGM is a promising electrolyte candidate for intermediate temperature SOFC
- Technical hurdles can be solved by a combination of basic and applied R&D
 - Cathode as support provides certain benefits not available to anode supported cells
- Progress in zirconia stack R&D can be applied directly (e.g., metal interconnects)