Simultaneous Removal of Particulates and NOx Using Catalyst Impregnated Fibrous Ceramic Filters

PDF Version Also Available for Download.

Description

The research is focused on the development and commercialization of high efficiency, cost effective air pollution control system, which can replace in part air pollution control devices currently in use. In many industrial processes, hot exhaust gases are cooled down to recover heat and to remove air pollutants in exhaust gases. Conventional air pollution control devices such as bag filters, E.P. and adsorption towers withstand operating temperatures up to 300 C. Also, reheating is sometimes necessary to meet temperature windows for S.C.R. Since Oxidation reactions of acid gases such as SO{sub 2}, and HCl with lime are enhanced at high ... continued below

Physical Description

9 pages

Creation Information

Choi, J.I.; Mun, S.H.; Kim, S.T.; Hong, M.S. & Lee, J.C. September 19, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The research is focused on the development and commercialization of high efficiency, cost effective air pollution control system, which can replace in part air pollution control devices currently in use. In many industrial processes, hot exhaust gases are cooled down to recover heat and to remove air pollutants in exhaust gases. Conventional air pollution control devices such as bag filters, E.P. and adsorption towers withstand operating temperatures up to 300 C. Also, reheating is sometimes necessary to meet temperature windows for S.C.R. Since Oxidation reactions of acid gases such as SO{sub 2}, and HCl with lime are enhanced at high temperatures, catalyst impregnated ceramic filters can be candidate for efficient and cost effective air pollution control devices. As shown on Fig. 1., catalytic ceramic filters remove particulates on exterior surface of filters and acid gases are oxidized to salts reacting with limes injected in upstream ducts. Oxidation reactions are enhanced in the cake formed on exterior of filters. Finally, injected reducing gas such as NH{sub 3} react with NOx to form N{sub 2} and H{sub 2}O interior of filters in particulate-free environment. Operation and maintenance technology is similar to conventional bag filters except that systems are exposed to relatively high temperatures ranging 300-500 C.

Physical Description

9 pages

Notes

OSTI as DE00836412

Source

  • 5th International Symposium on Gas Cleaning at High Temperatures, Morgantown, WV (US), 09/17/2002--09/20/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Office of Scientific & Technical Information Report Number: 836412
  • Archival Resource Key: ark:/67531/metadc781611

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 19, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 22, 2016, 5:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Choi, J.I.; Mun, S.H.; Kim, S.T.; Hong, M.S. & Lee, J.C. Simultaneous Removal of Particulates and NOx Using Catalyst Impregnated Fibrous Ceramic Filters, article, September 19, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc781611/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.