CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

SEMI-ANNUAL TECHNICAL PROGRESS REPORT

Report Period
October 1, 2002 to March 31, 2003

Compiled by
Hugh W. Rimmer

Issued November 15, 2003

DOE Award Number:
DE-FC26-02NT41607

Center for Advanced Separation Technologies
Virginia Polytechnic Institute & State University
Blacksburg, Virginia 24061-0258

National Research Center for Coal & Energy
West Virginia University
Morgantown, WV 26506-6064

Dept. of Metallurgical Engineering
University of Utah
Salt Lake City, UT 84112-0114

NMBGR
New Mexico Inst. of Mining & Technology
Socorro, NM 87801

Department of Mining Engineering
University of Kentucky
Lexington, KY 40506-0107

School of Mines & Engineering
Montana Tech of The Univ. of Montana
Butte, MT 59701

Metallurgical & Materials Engineering
University of Nevada, Reno
Reno, NV 89557-0042
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
ABSTRACT

This Technical Progress Report provides abstracts for the seventeen sub-projects awarded in the first year of DOE Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Due to the time taken up by the solicitation/selection process, these sub-projects were not approved until May 5, 2003 and no technical work was carried out during the first six months of this Agreement.

Note: SI is an abbreviation for “Le Systeme International d'Unites.”
TABLE OF CONTENTS

- DISCLAIMER ..2
- ABSTRACT ..3
- TABLE OF CONTENTS ...4
- INTRODUCTION ..5
- EXPERIMENTAL ..15
- RESULTS AND DISCUSSION ...16
- CONCLUSIONS ...17
- REFERENCES ...18
INTRODUCTION

The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation’s wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies.

Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas:

a) Solid-solid separation
b) Solid-liquid separation
c) Chemical/Biological Extraction
d) Modeling and Control, and
e) Environmental Control.

Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP - eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky, three at University of Utah, three at Montana Tech, three at New Mexico Tech, and one at the University of Nevada, Reno) by May 17, 2003. These projects are listed below by category, along with brief abstracts of their aims and objectives.
1. **Development of Novel Ultrafine Sizing Methods (Joint UK/VT Project)**
 Principal Investigators: R.-H. Yoon and G.H. Luttrell, Virginia Tech
 Principal Investigators: R.Q. Honaker and BK. Parekh, University of Kentucky
 Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

 The conventional techniques employed for sizing ultrafine particles in the coal and mineral processing industries have inherent inefficiencies that negatively impact on separation performance and production costs. In light of this problem, a broad based R&D program is proposed to investigate several innovative techniques for fine particle sizing. The processes to be evaluated will include a wide array of mechanical, hydraulic, and novel approaches for fine particle sizing. For each process, detailed tests programs will be conducted to optimize operating parameters so that maximum efficiency and capacity can be achieved while maintaining particle size cuts in the 25-50 µm size range. The resultant test data will be used to mathematically simulate different circuit arrangements for the most promising technologies. A detailed economic study will be performed for those circuits that have the greatest potential for commercialization and industrial implementation. Due to the large scope of this project, the proposed work will be conducted as a joint effort between researchers at the University of Kentucky and Virginia Tech.

2. **Dispersion and Flotation of Clays from New Mexico Potash Ores**
 Principal Investigators: I. Gundiler, S. Titkov, and M. Yekeler, New Mexico Tech
 Period of Performance: May 1, 2003-May 31, 2004 (1-Year Project)

 New Mexico is the largest potash producer in the United States, supplying 70% of the domestic consumption of agricultural fertilizers. Potash mining began in the Carlsbad potash district in the early 1940s and while there are still vast reserves of potash minerals, producers are now dealing with low grade ores contaminated with clays and water-soluble magnesium minerals, which adversely affect the flotation of sylvite (KCl). Sylvite is floated from saturated brines with cationic collectors. The clays present in these brines absorb flotation reagents (thus increasing reagent costs), decrease recoveries of sylvite, contaminate the product and increase energy consumption for dewatering and drying. These clays are dispersed during grinding and/or attrition scrubbing and are then removed by hydrocyclones ahead of flotation. However, significant amounts of clay are carried over into flotation, where they are further dispersed by the mechanical action of impellers, thus hindering flotation. Furthermore, elevated brine temperatures during the summer affect collector adsorption on clays, depressing sylvite flotation. The presence of high concentrations of magnesium ions in the brine, which is peculiar to this district, also affects recoveries.

 These technological problems must be solved for the state potash industry to remain viable and competitive. This study will investigate means of improving clay dispersion using organic and inorganic dispersants to increase the efficiency of slimes removal in existing facilities, and will study the effects of elevated magnesium ion concentrations and elevated temperatures on the flotation of sylvite. Clay flotation, which has been
shown to be superior to hydroseparators for clay removal in foreign operations, will also be investigated.

3. **Flotation Technology for the Trona Industry**
 Principal Investigator: Jan D. Miller, University of Utah
 Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

 Soda ash (Na₂CO₃) produced from the trona deposits of the Green River Basin in Wyoming by chemical treatment is valued at approximately $800 million per annum. Existing process technologies for the production of soda ash from trona involve dissolution in hot brine, drying, sedimentation and filtration for the removal of impurities, and subsequent crystallization and calcination for the recovery of soda ash. In this regard, mining and operating costs, particularly energy costs, are higher than desired. A preferred processing strategy might be to remove gangue mineral contaminants from the plant feed prior to dissolution in hot brine. It is expected that in this way improved productivity can be achieved in addition to significant savings in energy. Such a preprocessing strategy at ambient temperature and pressure has been limited by the lack of satisfactory process technology. Now based on recent results from laboratory research at the University of Utah it seems that the run-of-mine trona ore can be treated at ambient temperature and pressure using a special flotation procedure to separate the gangue minerals and make a trona concentrate with a purity of almost 99% trona at a recovery of more than 97%. Development and utilization of this new technology will allow for energy conservation, improved resource utilization, increased productivity and the development of a new product for the marketplace. In this regard a two-year research proposal involving industrial participation is proposed to develop the technology and demonstrate its effectiveness at a plant site.

4. **Flotation Processes/Experiments and Analysis**
 Principal Investigators: D. Telionis and P. Vlachos, Virginia Tech
 Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

 Flotation processes involve complex, three-phase flow interactions between a liquid, air bubbles and solid particles. For decades, engineers and researchers based their calculations on algebraic formulas that model these interactions. These formulas were derived from simple models, experimental data and/or arbitrary assumptions. Considerable progress has been made but this approach is still far from providing a reliable tool for the design of flotation machines.

 We will take a more rigorous approach to the analysis and modeling of the flotation process. The proposed effort will combine detailed theoretical analysis and modeling with state-of-the-art, global, multi-phase flow measurements to quantify the effects of the various hydrodynamic parameters on the flotation process. We will employ a Digital Particle Image Velocimeter (DPIV) that can record velocity vectors of all three phases. We will measure three-phase flow interactions of bubbles and model particles of different hydrophobicity with a turbulent flow field. We will deliver global, time-resolved velocity distributions and turbulence characteristics for each phase. Our modeling approach will incorporate all physical parameters that affect the collision efficiency of coal particles.
and flotation bubbles and the probabilities of attachment and detachment. An advanced model for predicting and quantifying the efficiency of the flotation process will be the final deliverable of this two-year effort. Such a tool will improve the design of flotation equipment and/or enhance the performance of existing systems.

5. **Column Flotation of Relative Coarse and Fine Dolomitic Phosphate Pebbles**
 Principal Investigator: Felicia F. Peng, West Virginia University
 Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

Dolomite in phosphate flotation concentrates is troublesome for down-stream operations. High dolomite contents cause higher consumption of sulfuric acid, reduce filtration rates and lower P_2O_5 content in the fertilizer manufacturing process. However, the separation of dolomite particles from phosphate minerals is difficult because the dolomite is finely disseminated throughout the phosphatic pebbles and both are oxide type minerals with the same cationic component. Thus, they show similar electrokinetic, adsorptive and desorptive behavior in physical separation process such as flotation. Various flotation processes have been developed in the past four decades, but none is satisfactory due to high MgO content and/or low overall P_2O_5 recovery in the final phosphate concentrate. In this research project, dolomitic phosphate pebbles from Florida will be treated by column flotation. A liberation analysis of the dolomite-phosphate matrix will be conducted to determine optimum grinding conditions; new selective mixtures of fatty acid collectors and non-ionic surfactants will be evaluated on relatively coarse (minus 300 microns) and fine (minus 150 microns) dolomite particles; appropriate mixtures of phosphoric acid/sulfuric acid will be used to depress phosphate particles; and the effect of addition of non-ionic surfactants on the separation performance will be determined. The goal is to produce a phosphate concentrate containing 30% P_2O_5 and less than 1.0% MgO contents at high P_2O_5 recoveries from low grade phosphatic pebbles stockpiled at plant sites and from pebbles generated from mining lower grade reserves.

b) **Solid-Liquid Separation**

6. **Improving Densification of Fine Coal Refuse Slurries to Eliminate Slurry Ponds**
 Principal Investigators: B.K. Parekh and R.Q. Honaker, University of Kentucky
 Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

Increased mechanization in underground coal mining has increased the volume of refuse generated by coal preparation plants. The fine refuse slurry, composed of coal and mineral matter, is usually disposed of in a holding pond (impoundment), but incidents of impoundment breakthrough have forced the industry to look for alternative methods for fine refuse storage in the future. The main objective of the proposed program is to evaluate a new technique known as "Paste Thickening Technology," which utilizes a DORR-OLIVER EIMCO DEEP CONE Thickener to discharge the waste slurry as a paste. The paste material should be stackable at low repose angles and would dry over a period of time, thus avoiding the storage of slurries in ponds. The proposed study will be conducted on coal waste slurries obtained from two different preparation plants. Laboratory studies will involve the characterization of the slurries, bench-scale
flocculation studies and rheological analysis of the flocculated materials to identify yield stresses at various solid concentrations. This information will be used to establish optimum conditions for the production of a thickened paste product. A pilot-scale study will then be conducted at one of the coal preparation sites to obtain technical and economic data for a commercial installation and operation. It is anticipated that the outcome of the study will be an effective and economical process for the safe disposal of fine coal refuse.

7. Development and Testing of a Horizontal Pressure Belt Filter
Principal Investigators: R.-H. Yoon & G.H. Luttrell, Virginia Tech
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

A variety of mechanical processes are available for dewatering fine particles in the coal and mineral processing industries. Unfortunately, many of these processes suffer from major shortcomings such as poor dewatering performance, low throughput capacity, and high capital and operating costs. This project seeks to overcome these problems by developing a new type of dewatering process that combines the operational flexibility of a continuous belt filter with the dewatering efficiency of a batch pressure filter. The proposed project involves the design, construction, testing, and evaluation of a prototype unit and pilot-scale test circuit having a production capacity of approximately 100 lb/hr. Test data obtained from the project will be used to promote the engineering development of a full-scale commercial unit.

c) Chemical/Biological Extraction

Principal Investigator: S. Duyvesteyn, University of Utah
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

The U.S. currently imports all of its nickel, which is a strategic material used in stainless steels and other corrosion-resistant materials. Existing U.S. resources are worth around $10 billion at current metal prices, but occur mostly in low-grade laterite deposits, for which conventional hydrometallurgical processes are not economically feasible production routes. These processes typically utilize mineral acids that cannot be recycled economically and can cause significant environmental problems. The solubilization of metal ions from ores by organic acids produced by microorganisms has been demonstrated to be a viable alternative for metal production with reduced environmental and remediation issues, as organic acids are readily biodegradable. The fact that many of these organic acids and other metabolites form strong chelating complexes with the base metal ions also results in a reduction in the acid requirements to achieve complete solubilization.

This research proposal involves a biotechnological approach, called bio-assisted heap leaching (BAHL), for the production of nickel metal from low-grade ore synergistically
with the co-production of citric acid. The BAHL process can be described as follows: laterite nickel ore is combined with an organic nutrient and put on heaps where fungi, such as Aspergillus niger, produce organic acids during their natural metabolic cycle. Recycle solution is sprayed over the heaps and its percolation through the heaps results in the dissolution of nickel. The resulting nickel-containing leach solution is collected and the nickel and citrate values are recovered.

9. **The Development and Utilization of Alkaline Sulfide Leaching and Recovery of Gold**
Principal Investigator: C. Anderson and L.G. Twidwell, Montana Tech
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

Due to the increasing concerns over the emission of sulfur dioxide from roasting and smelting, there has been an increased interest in pressure oxidation as a means of treating gold bearing ores and concentrates. One of the problems with the partial oxidation of the sulfide host matrix to form elemental sulfur is that sulfur containing streams are difficult to treat using cyanidation. In the present study, the alkaline sulfide system will be studied as an alternative to cyanide for recovering gold from elemental sulfur. A complete thermodynamic model of the alkaline sulfide gold leaching system will be developed using Stab-Cal software and the leaching system and its kinetics will be optimized.

10. **Hydrometallurgical Processing of Chalcopyrite Concentrates**
Principal Investigator: M. Misra and M. Fuerstenau, University of Nevada, Reno
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

Hydrometallurgical processing of chalcopyrite at moderate temperature and pressure has been a goal of the copper industry for decades. Research has shown that a protective sulfur layer forms on chalcopyrite when leached with ferric salts in acidic medium. This layer limits the transport of electrons from the mineral surface to the oxidant and precludes the use of this technology for chalcopyrite processing. Research at the University of Nevada, Reno has shown that the introduction of finely-divided silica improves the kinetics of leaching dramatically. Silica adsorbs on the surface of chalcopyrite, and since it is an n-type conductor, conduction of electrons from the mineral surface to the oxidant occurs by photocatalysis of the sulfur product layer. Dissolution amounts of as much as 80% have been achieved under the limited conditions examined, namely at atmospheric pressure and 50°C.

11. **Simultaneous Electrolysis of Copper and Ferrous Ions to Produce Copper Cathode and to Regenerate Ferric Sulfate - The Lixiviant to Dissolve Copper Sulfide Minerals**
Principal Investigator: C. Young, H.-H. Huang and C. Fabian, Montana Tech
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

Copper leaching is primarily conducted on oxidized ore bodies at low pH by using sulfuric acid (H₂SO₄). The sulfate acts as the lixiviant to solubilize the copper as copper sulfate (CuSO₄). An oxidant is also needed to enhance reaction rates – typically this is
dissolved oxygen (O_2) and/or ferric (Fe^{3+}) ion. The dissolved copper must then be extracted from the water to separate it from other dissolved constituents including iron. Traditional solvent extraction and electrowinning (SX/EW) procedures do this and ultimately yield quality copper cathode as product. After SX/EW, leach solution is recycled to the leaching process and replenished with oxidant as needed. For example, biological activity can regenerate ferric ions or mechanical agitation can produce dissolved oxygen (which in turn can regenerate ferric ions).

Ferric ions can also be regenerated electrolytically and simultaneously to copper cathode production. This is the basis of the proposed research. To accomplish this, a porous membrane will be used to keep the anode and cathode compartments separated and modern rotating cylinder electrodes will be used to stir solutions, obtain high current densities and ultimately produce superior grade copper cathode. Although it is possible to avoid the SX step, it will be used to produce two streams: raffinate, which will go to the anode compartment where ferric is regenerated, and pregnant or advance solution, which will be go to the cathode compartment where copper metal is produced. Various chemicals and additives may have to be added to control copper cathode formation and thereby avoid, for example, dendritic growth. Preliminary cost analyses show that copper can be produced for approximately $0.30/lb with this new, more energy efficient, technique.

12. Ion Exchange Recovery of Cobalt from Copper Leach Solutions
Principal Investigator: I. Gundiler and M. Hatch, New Mexico Tech
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

Cobalt is a strategic and critical metal which is used in production of super alloys for use in jet engine turbines, wear and corrosion resistant alloys, cutting tools, magnets and various other alloys and chemicals. It is not mined or refined in the United States; therefore, 80% of the cobalt consumed in the U.S. is imported. The remaining balance is met with recycled alloys and supplies from stockpiles. Although there is historical production and known reserves, these are not economical to exploit at the present. However, there is a readily available source of cobalt in the leach solutions generated in large copper mining operations in the Southwestern U.S. If only a fraction of this cobalt could be recovered, New Mexico and Eastern Arizona copper leach operations could potentially supply 20% of U.S. imports. Currently, the technology to recover the metal from these solutions economically is not available.

Ion exchange processes could recover this cobalt. However, commercially available resins are either too expensive, or do not function in acidic solutions. Absorption kinetics of these resins are also fairly slow. Three new resins will be synthesized at New Mexico Tech for copper and cobalt recovery from acidic solutions. The resins will be characterized and tested in the laboratory using pure chemicals, as well as process solutions to be obtained from the Phelps Dodge Mining Company, New Mexico operations. The performance of the synthesized resins will also be compared with that of commercially available resins.
13. The Effect of Diphenyl Oxide Surfactants on Nucleation and Growth of Potassium Sulfate Crystals: Development of Enhanced Surfactants for the Potash Industry
Principal Investigator: G. Bond and C. Hockensmith, New Mexico Tech
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

Surfactant-controlled crystallization leads to an increase in the efficiency of potassium sulfate production, particularly when alkyl diphenyl oxide-type (ADO) surfactants are employed in synthesis. Improved control of crystallization in both the initiation and termination phases can increase the ratio of granular particles to fines, decreasing costs associated with production and facilitating the utilization of lower-grade ores. Mother liquors in potash extraction contain high percentages of magnesium as well as other ions including chloride and impurities such as clay and silica. Potassium sulfate crystals will be produced in the presence of different ADO surfactants, and evaluated by SEM, TEM, XRD, FTIR and AFM. Crystallization processes, particularly those that affect crystal morphology, size, initiation and termination, will be studied in relation to the surfactant effect. This information will be used to improve control of potassium sulfate precipitation and develop the next generation of surfactants to facilitate extraction of granular potassium sulfate.

d) Modeling and Control

14. Online Monitoring and Diagnosing of Coal Fines During Separation Process
Principal Investigator: B.S. Kang and E.K. Johnson, West Virginia University
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

The goal of this research program is to develop an on-line, non-contact, elemental analysis of coal fines during solid-solid separation process through the use of Laser-Induced Breakdown Spectroscopy (LIBS). Of particular interest is the detection and quantitative measurement of the amount of carbon, sulfur, mercury, and other trace elements in the separated coal fines. The proposed experimental technique will be applied to a circulating fluidized bed (CFB) riser system for determination of coal fines separation efficiency as well as optimization of the separation process variables using a fuzzy logic control approach.

15. Development of a Novel Optical Radiation Depolarization Technique for On-Line Measurements of Particle and Bubble Sizes
Principal Investigators: D. Tao, M.P. Menguc and C. Crofcheck, University of Kentucky
Period of Performance: May 1, 2003-May 31, 2005 (2-Year Project)

Grinding and froth flotation are the two most important processes for mineral beneficiation. The importance of grinding is well reflected in the fact that approximately 80% of beneficiation costs are for grinding, mainly due to high energy consumption. To reduce energy consumed by grinding, fines should be removed quickly from the grinding circuit. This requires a reliable on-line particle size analysis technique. Similarly, froth flotation is the most widely used solid-solid separation process for coal and minerals beneficiation and about 90%
of mineral concentrates are produced by froth flotation. Air bubble size distribution plays an important role in flotation separation performance but optimization of bubble size distributions will only be possible if bubble size can be monitored on-line.

The proposed project is aimed at developing an optical radiation depolarization technique for on-line size measurement of particle sizes in grinding and bubble sizes in flotation. The technique is based on the analysis of angular and radial profiles of reflection and transmittance of an object subjected to a collimated, polarized light beam. A hybrid Monte Carlo/Ray Tracing method will be used to simulate the depolarization of radiation by particles or air bubbles and size distributions will be determined by best fitting experimentally determined vertical and horizontal polarization components of the radial and angular profiles of reflection and transmission. The proposed technique should also be able to determine water film thicknesses and bubble separation distance distributions in foams.

e) Environmental Control

16. Electrolytic Solution Purification and Metal Recovery from Metal-Bearing Toxic Waste Streams
Principal Investigator: Michael L. Free, University of Utah
Period of Performance: May 1, 2003-May 31, 2004 (1-Year Project)

Industry creates numerous waste streams, many of which contain dissolved metal ions that must be removed to preserve the environment. Many of these waste streams can be created by natural processes that are accelerated by industry such as acid mine drainage, made as byproducts of chemical processing such as metal extraction, or as the result of manufacturing processes such as electronic component manufacturing. Often such wastes are complex and involve multiple metal ions. Regardless of the waste origin, toxic metal ions must be removed.

In the proposed project a novel method of removing multiple toxic metals from aqueous media by selective pulse-plating with high surface area electrodes will be evaluated and developed in a manner that will allow the metals to be recovered individually as purified metals in an environmentally sound way. The direct production of metal as a byproduct, rather than as a toxic waste, will contribute to better resource utilization as well as a reduction in toxic waste generation.

17. Determining the Effectiveness of Gold Filters for Removing Mercury from Coal Fired Power Plants
Principal Investigator: K. Ganesan, Montana Tech
Period of Performance: May 1, 2003-May 31, 2004 (1-Year Project)

Because the US EPA is planning to regulate mercury emissions from power plants, there is a clear need to develop devices that can cost effectively remove mercury from power plant flue gases. Most current research has focused on transferring mercury from
the air stream to fly ash or converting elemental mercury to divalent mercury to absorb it in wet scrubbers. However, when low chlorine content coal is combusted most of the mercury in the flue gas exists as elemental mercury, which is very hard to remove. Thus, to comply with the potential 90% mercury reduction proposed by EPA, one must oxidize the elemental mercury to either mercuric chloride or oxide as a way to collect particulates. In either case, mercury is merely converted to a form that is also difficult and expensive to recover. Therefore, it appears that directly removing mercury from the flue gas will be the most cost effective and environmentally friendly approach. This proposal is focused on removing elemental mercury from flue gas using gold filters. The main objective of this research is to evaluate the effectiveness of gold wire mesh in removing mercury vapor from flue gas. A wire mesh made of thin (<0.1 mm diameter) gold wires will be tested in the laboratory, initially with a synthetic gas stream containing mercury vapor in the range of 1-300 µg/m³. Similar tests will be conducted in combustion gases by burning six types of western and eastern coals. The study will be conducted for six concentration levels of mercury; 5, 10, 25, 50, 100 and 300 µg/m³.
EXPERIMENTAL

The CAST II initiative is comprised of a diverse group of subprojects, most of which are multistage, task-oriented developmental projects that cannot be conveniently categorized by the traditional reporting criteria required by the DOE Uniform Reporting Requirements. For example, several of the projects will require the construction of unique test equipment, others the generation of simulation models, etc., as preliminary tasks in the overall execution of the project. As such, they are more appropriately described and discussed as “Project Tasks” within the context of the individual Technical Progress Reports for each of the subprojects and will be attached to subsequent reports as Appendices.
RESULTS AND DISCUSSION

The CAST II initiative is comprised of a diverse group of subprojects, most of which are multistage, task-oriented developmental projects that cannot be conveniently categorized by the traditional reporting criteria required by the DOE Uniform Reporting Requirements. For example, several of the projects will require the construction of unique test equipment, others the generation of simulation models, etc., as preliminary tasks in the overall execution of the project. As such, the presentation of results is more appropriately described and discussed within the context of the individual Technical Progress Reports for each of the sub-projects and will be attached to subsequent reports as Appendices.
CONCLUSIONS

The initial RFP for this project resulted in seventeen (17) sub-projects being selected for funding in early May, 2003. As a result, no work was done on any of these projects during the current reporting period, i.e., October 1, 2002-March 31, 2003. However, brief summaries of individual project aims are given in the Introduction to this Technical Progress Report.
REFERENCES

References utilized by the individual sub-projects will be reported in their Technical Progress Reports which will be attached to subsequent versions of this document as Appendices.