Caustic Precipitation of Plutonium and Uranium with Gadolinium as a Neutron Poison

PDF Version Also Available for Download.

Description

The caustic precipitation of plutonium (Pu) and uranium (U) from Pu and U containing waste solutions has been investigated to determine whether gadolinium (Gd) could be used as a neutron poison for precipitation with greater than a fissile mass containing both Pu and enriched U. Precipitation experiments were performed using both actual samples and simulant solutions with a range of 2.6-5.16 g/L U and 0-4.3 to 1 U to Pu. Analyses were performed on solutions at intermediate pH to determine the partitioning of elements for accident scenarios. When both Pu and U were present in the solution, precipitation began at ... continued below

Physical Description

vp.

Creation Information

ANN, VISSER April 14, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The caustic precipitation of plutonium (Pu) and uranium (U) from Pu and U containing waste solutions has been investigated to determine whether gadolinium (Gd) could be used as a neutron poison for precipitation with greater than a fissile mass containing both Pu and enriched U. Precipitation experiments were performed using both actual samples and simulant solutions with a range of 2.6-5.16 g/L U and 0-4.3 to 1 U to Pu. Analyses were performed on solutions at intermediate pH to determine the partitioning of elements for accident scenarios. When both Pu and U were present in the solution, precipitation began at pH 4.5 and by pH 7, 99 percent of Pu and U had precipitated. When complete neutralization was achieved at pH greater than 14 with 1.2 M excess OH-, greater than 99 percent of Pu, U, and Gd had precipitated. At pH greater than 14, the particles sizes were larger and the distribution was a single mode. The ratio of hydrogen to fissile atoms in the precipitate was determined after both settling and centrifuging and indicates that sufficient water was associated with the precipitates to provide the needed neutron moderation for Gd to prevent a criticality in solutions containing up to 4.3 to 1 U to Pu and up to 5.16 g/L U.

Physical Description

vp.

Source

  • Journal Name: Nuclear Technology

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-MS-2005-00086
  • Grant Number: AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 840798
  • Archival Resource Key: ark:/67531/metadc781600

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 14, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 5, 2016, 3:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

ANN, VISSER. Caustic Precipitation of Plutonium and Uranium with Gadolinium as a Neutron Poison, article, April 14, 2005; South Carolina. (digital.library.unt.edu/ark:/67531/metadc781600/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.