HTGR Unit Fuel Pebble k-infinity Results Using Chord Length Sampling

PDF Version Also Available for Download.

Description

There is considerable interest in transport models that will permit the simulation of neutral particle transport through stochastic mixtures. Chord length sampling techniques that simulate particle transport through binary stochastic mixtures consisting of spheres randomly arranged in a matrix have been implemented in several Monte Carlo Codes [1-3]. Though the use of these methods is growing, the accuracy and efficiency of these methods has not yet been thoroughly demonstrated for an application of particular interest--a high temperature gas reactor fuel pebble element. This paper presents comparison results of k-infinity calculations performed on a LEUPRO-1 pebble cell. Results are generated using ... continued below

Physical Description

335 Kilobytes pages

Creation Information

Donovan, T.J. & Danon, Y. June 16, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Lockheed Martin
    Publisher Info: Lockheed Martin Corporation, Schenectady, NY 12301 (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

There is considerable interest in transport models that will permit the simulation of neutral particle transport through stochastic mixtures. Chord length sampling techniques that simulate particle transport through binary stochastic mixtures consisting of spheres randomly arranged in a matrix have been implemented in several Monte Carlo Codes [1-3]. Though the use of these methods is growing, the accuracy and efficiency of these methods has not yet been thoroughly demonstrated for an application of particular interest--a high temperature gas reactor fuel pebble element. This paper presents comparison results of k-infinity calculations performed on a LEUPRO-1 pebble cell. Results are generated using a chord length sampling method implemented in a test version of MCNP [3]. This Limited Chord Length Sampling (LCLS) method eliminates the need to model the details of the micro-heterogeneity of the pebble. Results are also computed for an explicit pebble model where the TRISO fuel particles within the pebble are randomly distributed. Finally, the heterogeneous matrix region of the pebble cell is homogenized based simply on volume fractions. These three results are compared to results reported by Johnson et al [4], and duplicated here, using a cubic lattice representation of the TRISO fuel particles. Figures of Merit for the four k-infinity calculations are compared to judge relative efficiencies.

Physical Description

335 Kilobytes pages

Notes

INIS; OSTI as DE00822114

Source

  • Other Information: PBD: 16 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LM-03K063
  • Grant Number: AC12-00SN39357
  • DOI: 10.2172/822114 | External Link
  • Office of Scientific & Technical Information Report Number: 822114
  • Archival Resource Key: ark:/67531/metadc781597

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 16, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 28, 2016, 8:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Donovan, T.J. & Danon, Y. HTGR Unit Fuel Pebble k-infinity Results Using Chord Length Sampling, report, June 16, 2003; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc781597/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.