Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism

PDF Version Also Available for Download.

Description

Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a ... continued below

Physical Description

1.6 MB pages

Creation Information

Gates, D.A. & White, R.B. January 28, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments.

Physical Description

1.6 MB pages

Notes

INIS; OSTI as DE00821516

Source

  • Other Information: PBD: 28 Jan 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3917
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/821516 | External Link
  • Office of Scientific & Technical Information Report Number: 821516
  • Archival Resource Key: ark:/67531/metadc781556

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 28, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 10, 2016, 5:53 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gates, D.A. & White, R.B. Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism, report, January 28, 2004; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc781556/: accessed July 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.