PROGRESS IN 2 mm GLOW DISCHARGE POLYMER MANDREL DEVELOPMENT FOR NIF

PDF Version Also Available for Download.

Description

OAK-B135 All planned National Ignition Facility (NIF) capsule targets except machined beryllium require a glow discharge polymer (GDP) mandrel upon which the albator is applied. This mandrel, {approx} 2 mm in diameter, must at least meet if not exceed the symmetry and surface finish requirements of the final capsule. Such mandrels are currently produced by the three-step depolymerizable mandrel technique. The quality of the final mandrel depends upon precise optimization and execution of each of the three steps. They had shown previously that fabrication of a mandrel which met the symmetry and surface finish requirements was feasible using this technique. ... continued below

Physical Description

9 pages

Creation Information

NIKROO,A; BOUSQUET,J; COOK,R; McQUILLAN,B.W; PAGUIO,R & TAKAGI,M June 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

OAK-B135 All planned National Ignition Facility (NIF) capsule targets except machined beryllium require a glow discharge polymer (GDP) mandrel upon which the albator is applied. This mandrel, {approx} 2 mm in diameter, must at least meet if not exceed the symmetry and surface finish requirements of the final capsule. Such mandrels are currently produced by the three-step depolymerizable mandrel technique. The quality of the final mandrel depends upon precise optimization and execution of each of the three steps. They had shown previously that fabrication of a mandrel which met the symmetry and surface finish requirements was feasible using this technique. In this paper they will discuss recent progress towards converting this process into a high yield, production scale process.

Physical Description

9 pages

Notes

INIS; OSTI as DE00823786

Source

  • 15th TARGET FABRICARTION SPECIALISTS MEETING, GLENEDEN BEACH, OR (US), 06/01/2003--06/05/2003; Other Information: TO BE PUBLISHED IN FUSION SCIENCE AND TECHNOLOGY

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: GA-A24483
  • Grant Number: AC03-01SF22260
  • Office of Scientific & Technical Information Report Number: 823786
  • Archival Resource Key: ark:/67531/metadc781539

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 19, 2016, 12:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

NIKROO,A; BOUSQUET,J; COOK,R; McQUILLAN,B.W; PAGUIO,R & TAKAGI,M. PROGRESS IN 2 mm GLOW DISCHARGE POLYMER MANDREL DEVELOPMENT FOR NIF, article, June 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc781539/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.