
Performance Modeling for 3D Visualization in a Heterogeneous
Computing Environment

Ian Bowman1,2 John Shalf2 Kwan-Liu Ma1 Wes Bethel2
1University of California at Davis 2Lawrence Berkeley National Laboratory

{bowman,ma}@cs.ucdavis.edu {ewbethel,jshalf}@lbl.gov

Abstract

The visualization of large, remotely located data sets neces-
sitates the development of a distributed computing pipeline
in order to reduce the data, in stages, to a manageable size.
The required baseline infrastructure for launching such a dis-
tributed pipeline is becoming available, but few services sup-
port even marginally optimal resource selection and partition-
ing of the data analysis workflow. We explore a methodology
for building a model of overall application performance us-
ing a composition of the analytic models of individual com-
ponents that comprise the pipeline. The analytic models are
shown to be accurate on a testbed of distributed heteroge-
neous systems. The prediction methodology will form the
foundation of a more robust resource management service for
future Grid-based visualization applications.

1 Introduction

In scientific analysis and visualization, scientists or re-
searchers would often like to use their desktop workstations
to visualize data located at a remote site such as a supercom-
puter center. With large datasets, it is impractical, or impossi-
ble to download the entire dataset to the workstation and visu-
alize it. However, it has been observed that visualization is a
process of data reduction—taking large quantities of data and
using visual methods to reduce them to their essential, com-
prehensible qualities. Each stage of the visualization pipeline
can potentially be used to reduce the total size of the data
in a progressive/staged fashion. The benefits of data reduc-
tion on the distributed pipeline must be balanced against the
latencies inherent in remotely located components; thus, an
optimal partitioning must consider pipeline distributions that
are not necessarily a simple client-server division. Therefore,
somewhere between the remote site and local workstation a
distributed visualization pipeline must be constructed that is
optimally partitioned so as to deliver the highest effective per-
formance to the user.

This type of problem is well suited for a Grid-based ap-
proach [12] where distributed computational and storage re-

sources are employed to reduce the data movement to a man-
ageable size. Distributed visualization is hardly a new con-
cept, but in practice, most available examples of distributed
workflows offer limited flexibility, target a very narrow range
of infrastructure, and employ comparatively static distribu-
tion of the computation. Manual resource selection for Vir-
tual Organizations (VOs) with even a modest number of ser-
vices can quickly become impractical. Even with the simplest
of workflows, it is very easy to select a workflow partitioning
where the performance of the distributed pipeline is actually
worse than simply running a monolithic application in a sin-
gle location. Unless we develop reliable automated methods
to select appropriate visualization pipeline distributions, we
stand very little chance of deriving any tangible benefit from
the Grid computing infrastructure.

The foundation of an effective distributed application man-
ager is the ability to select appropriate resources and ac-
curately rank the predicted performance of various distri-
bution options. Accurate performance prediction requires
accurate performance models of the components that com-
prise a distributed applicationbefore they are launched.
There is considerable work in performance modeling for nu-
merical simulations that employ iterative mesh-based meth-
ods [1], but comparatively little work on selecting appro-
priate performance models for interactive visualization ap-
plications. Prior work in this field has identified many ap-
proaches to performance modeling including analytic [8],
heuristic/statistical [11], and even history-based methodolo-
gies [10], but it is not clear which method is best suited for
the unique characteristics of distributed visualization appli-
cations. Performance modeling for visualization applications
poses a special challenge because performance is extremely
dynamic and input dependent. For example, assuming we are
trying to model the performance of an isosurface algorithm,
even with the same dataset, different isolevels can produce
isosurfaces with dramatically different numbers of triangles.
Different time steps of the same dataset will result in vastly
different quantities of extracted triangles even at the same
isolevel. The differences in the number of triangles produced
results in radically different performance characteristics. This
has a very similar effect on distributed memory parallel algo-

1



rithms because load-balanced input data can produce results
that are so load-imbalanced that they obviate the benefits of
parallelism. This is very different from performance analysis
of simulation codes and mesh partitioning where the work-
load remains essentially static through the lifetime of a simu-
lation.

In this paper we present a method for modeling and pre-
dicting the performance of visualization stages, and ulti-
mately the entire visualization pipeline, using a compos-
ite analytic model. Our approach is targeted at modular
component-based visualization workflows similar to VTK
and OpenDX; therefore, each stage of the visualization
pipeline is handled by a component and each component is
modeled individually. These components can be distributed
across many machines, even ones with different architectures.
First we develop a methodology for modeling the perfor-
mance of these components on our testbed machines using
a minimal number of input attributes. Then we combine the
performance predictions for individual components with net-
work performance information to facilitate the prediction of
overall pipeline performance for the composite application.
Our experimental results show that the actual performance of
both the individual components and the overall visualization
pipeline agrees with the predicted performance to a high de-
gree of accuracy.

2 Related Work

Modeling of mesh-based parallel scientific applications has
garnered the bulk of attention from the performance analysis
community. The computational load for these applications
typically does not change considerably during execution.
Only recently has there been considerable effort to model
dynamically adaptive applications in heterogeneous environ-
ments [1, 2, 3]. Efforts like the Grid Application Develop-
ment System (GrADS) [8] have been driven by the highly
dynamic, heterogeneous and lossy nature of the Grid infras-
tructure more than by dynamic resource requirements on the
part of the applications. The adaptivity of the application, is
mostly confined to discrete events like ”contract violations”
and their associated job migration for tightly-coupled parallel
applications or management task-farming engines that sup-
port embarrassingly parallel application scenarios.

Visualization, by contrast, offers a considerably more
dynamic and complex resource utilization profile. Small
changes in the input parameters to some visualization algo-
rithms can result in huge changes in both execution time and
amount of generated data. Consequently optimal partitioning
for these pipelines can change dramatically during execution.
Therefore, existing work on data-parallel partitioning strate-
gies may not be directly relevant to distributed visualization
pipelines. It is our intention to evaluate the applicability of
existing performance prediction methods to this application

scenario. In this paper, we focus almost exclusively on ana-
lytic methods. Future work will compare the efficiency, accu-
racy, and limitations of the three primary performance predic-
tion techniques: analytic, heuristic/statistical, and historical.

2.1 Models

Statistical/heuristic methods attempt to reduce the size of
the performance metric space and complexity of the model
by employing statistical correlations. Examples of such a
methodology is the Dynamic Statistical Projection Pursuit
method of Vetter and Reed [11], and UCSD’s trace driven
MAPS system [15]. Statistical methods tend to overlap with
heuristic techniques like sqmat [14] that rely on tunable mi-
crobenchmarks to characterize a given machine for a given
set of algorithm techniques. First an algorithm is character-
ized by its pattern of memory references and computational
intensity. Then one uses a simplified code that derives a set of
parameters that characterize a given architecture. These pa-
rameters are then fed into a statistical model that can predict
the performance of the original algorithm on an architecture
without actually running it there. Much of this work is highly
experimental and still under development.

One can make reasonably accurate predictions of compo-
nent performance using historical logs of performance infor-
mation. A good example of a history-based performance pre-
diction method is Rich Wolski’s Network Weather Service
(NWS) [10] which uses historical patterns in network traf-
fic to predict current network congestion conditions. There
is often considerable variability in the accuracy of these pre-
dictions, but sometimes the historical model can actually per-
form better than an analytic model because it can take into
account unexpected factors such as the social/behavioral pat-
terns of the people who use the computing infrastructure.
However, creating a historical model requires monitoring of
real usage patterns. In our situation, we would have to in-
strument a widely used production code in a completely non-
invasive manner to collect real historical data in order to build
our model—a difficult proposition at best.

Analytic methods, perhaps the most common and direct
technique in performance modeling, attempt to derive an
equation that can predict an algorithm’s performance using
a minimal set of input parameters. Examples include the
latency-based model employed for modeling the performance
of sparse-matrix kernels [13]. In practice, it is quite diffi-
cult to find a minimal set of truly independent parameters—
resulting in very complex models. A model with too many
parameters can be very difficult to validate as well because
the parameter space and dependent performance metric space
can be very large. The applicability of the results can be quite
architecture-specific, thereby limiting their relevance. How-
ever, they offer the most direct approach to developing a pre-
dictive performance model for our components. By limiting
the scope of our experiments to a simple isosurfacer work-

2



File
Reader

3D Grid

Isosurface
Extraction

Triangle
List

Offscreen
Renderer

Image
Data

Display
Screen
Image

Figure 1: Components and Data flow for visualization pipeline.

flow, we are able to develop an analytic model with the fewest
possible degrees of freedom.

2.2 Partitioning

There exist visualization applications that allow the user to
distribute the visualization process into a pipeline. The pre-
dominant drawback with existing mainstream implementa-
tions is that the pipeline partitioning must be done manually.
This requires the user to have fairly detailed knowledge of
the machines available, in order to know which resource is
appropriate to handle a particular component—an impracti-
cal requirement for a typical production environment.

Current remote visualization applications typically employ
two different partitioning strategies. With one type, all of the
visualization computations are handled by the server contain-
ing the dataset, and only the image data is sent to the work-
station [4]. For the other type, a subset of the dataset or the
derived geometry and/or texture data is sent from the server to
the workstation, which handles the local visualization [5, 6].
There are two problems with applying this approach to the
Grid. One is that the desirability of one pipeline setting over
the other may change at run time. The other, more obvious,
problem is that with a large number of resources available, it
may be impractical to perform the resource selection manu-
ally.

3 Application

A popular paradigm for representing visualization workflows
is the data-driven dataflow component pipeline. Examples of
systems that use this execution paradigm in distributed en-
vironments include tools such as AVS, OpenDX, and VTK.
For the purpose of this paper, we model the performance of a
network-distributed isosurface visualization pipeline. We se-
lected this particular restricted case because of its simplicity,
its pervasive use in scientific and engineering applications,
and because of its relevance to a variety of similar stencil-
based visualization algorithms that produce geometric out-
put. This pipeline has four different stages, which are Reader,
Isosurface Extractor, Off-screen Renderer and Display. Fig-
ure 2.1 shows such a pipeline. The components are designed
such that they can be composed in any topological distribu-
tion of network-connected compute resources in a location-

independent manner—communicating via the fastest avail-
able method. When communicating locally, the components
exchange data using a pointer hand-off in the same applica-
tion space. In the distributed case, data is serialized and sent
to the next machine via TCP packets. Associated with the
Reader is a 3D grid dataset, associated with the Isosurface
Extractor is a Triangle List, and with the Renderer an Image
Buffer.

We restrict ourselves to an execution paradigm where each
component is activated in sequence along the direction of the
forward dataflow dependencies in response to any changes
in component inputs. This execution paradigm is typical of
visulization workflows. Some visualization applications also
support an asynchronous pipelined execution model for out-
of-core methods; however, modeling such an execution sce-
nario requires incorporation of queuing theory in addition to
the analytic models for each component. Since both execu-
tion scenarios must be composed from the performance mod-
els of individual components, we have chosen to focus our
initial work on the simpler of the two cases. Thus, our re-
sults are only applicable to the data-driven sequential execu-
tion paradigm, but eventually we will be able to apply the re-
sulting component performance models for future work that
employs queuing theory to generalize the performance model
enough to accommodate asynchronous systems.

When components are located on the same machine, data
is exchanged between the components using a simple pointer
hand-off. When the components must communication be-
tween different machines, the data is serialized and trans-
ferred over the network via a TCP socket and then deseri-
alized at the destination. Assuming all components are dis-
tributed among various machines, the component interaction
and data flow is as follows. First the Reader opens a dataset
file and uses it to initialize a 3D grid dataset. The 3D grid is
serialized and its packets are sent to the Isosurface Extractor.
The Isosurface Extractor deserializes the 3D grid, and uses
it (along with an isovalue) to create the isosurface triangles.
These triangles are used to initialize a Triangle List which is
serialized as before, and sent to the Renderer. The Renderer
renders the triangles in the Triangle List and stores this image
to the Image dataset. It then serializes the Image Dataset and
sends it to the Display, which simply deserializes and displays
the image server data. However, any co-located components
will simply pass pointers to data-structures to exchange data

3



in the most efficient manner possible.
While the objective of our work is to predict the perfor-

mance of visualization tools that employ data-driven visual-
ization workflows, the actual target systems are far too com-
plex to instrument in an effective and timely manner. There-
fore, we developed our own simplified pipeline that provides
functionally equivalent operations. The simpler pipeline
greatly accelerated our ability to instrument the components
and understand the result with a minimum of engineering
complexity; however, we are confident that our results can
be applied to the more complex applications.

4 Performance Model

Each of the components has a fully parameterized perfor-
mance model that contain many machine-dependent coeffi-
cients. We use a series of benchmarks to approximate the
correct values for these coefficients.

Once the performance of the various components can be
modeled, additional network information must still be gath-
ered to predict overall pipeline performance. Our technique
for collecting this data is discussed below.

We use the following notation. Time is represented byt, a
parameter is represented byn, and a constant is represented
by aC.

4.1 Reader

The time needed for a file to be read off disk is dominated
by the 3D grid size. Hence, the performance model for our
reader is simply

treader(nv) = nv×Creader, (1)

wherenv = x× y× z (x, y and z, represent the dataset di-
mension, in voxels), andCreader is computed by first simply
opening a variety of datasets and recording the time spent for
each open. Using the known file sizes, we find an average
Creader for each machine.

4.2 Isosurface Extractor

The performance model for isosurface extraction is the most
complicated of the component models. We used the March-
ing Cubes algorithm [7] for our Isosurface Extractor compo-
nent. There was initially some uncertainty as to whether the
isosurface extraction performance would be dominated by the
cast-table selection (proportional to the number of cells inter-
sected by the isosurface) or by the number of triangles pro-
duced by the case-tables, which can vary from 1-5 triangles.
After a series of benchmarks, we determined that the isosur-
face extraction performance was based on the number of tri-
angles extracted rather than on the number of cells intersected

by the surface. This leads to significant difficulty in predict-
ing ahead of time the isosurface extraction performance for
a triangle based model. Also, even if no triangles are gen-
erated, time is still consumed marching through the dataset
inspecting cells. No additional optimization for speeding up
cell sending is applied. Hence, there is a base cost, which is
determined by the size of the 3D grid dataset. Our perfor-
mance model is therefore

tiso(nt ,nv) = base(nv)+nt ×Ciso, (2)

where base cost is modeled withbase(nv) = nv×Cbase, where
Cbaseis computed by first of all using our Isosurface Extractor
on datasets of various sizes and using isovalues that do not
generate any triangles. We use the times recorded to find an
averageCbase value. We use a similar method to findCiso:
We simply record the time spent computing isosurfaces that
generate a varying number of triangles. Later we use these
times to find an average value forCiso.

4.3 Off-screen Renderer

The off-screen render time is dominated by the number of
triangles being rendered. Hence our model is

trender(nt) = nt ×Crender+ treadback, (3)

wheretreadback is found by recording the time spent reading
the frame buffer after rendering no triangles, and where to
find Crender we first record the times spent rendering various
amounts of triangles, and use those times to find an average
value. treadback incorporates both the rasterization time on-
board the video card and the cost of reading the framebuffer
back into user memory. It can be further parameterized by
the image-size, but we will restrict the parameterization in
this study to focus on a fixed image size.

4.4 Network

We are interested only in the following three bandwidths,
Reader-Isosurfacer (Bri) measured inbytes/sec, Isosurfacer-
Renderer (Bio) measured intriangles/sec, and Renderer-
Display (Bod) measured inpixels/sec. To measure the net-
work bandwidth between two machines, we have one ma-
chine serialize and deserialize a dataset, while the other dese-
rializes and serializes that same dataset. In order to find Bri,
we use the above proceedure with a 3D grid dataset. In order
to find Bio, we use a Triangle List, and to find Bod we use
a triangle list. The network performance model does not ac-
count for protocol behavior such as TCP slowstart, loading,
or latency effects. While the performance model for the net-
work is not as sophisticated as it could be, it has proven to be
sufficient to predict the application performance.

4



Figure 2: Left: turbulent jet data, 104×129×129 voxels. Middle: CT head data, 256×256×240 voxels. Right: Argon bubble
data, 640×256×256 voxels.

5 Performance Model Tests

To test our models we used the following five machines. A
single shared node of an IBM SP Nighthawk II running AIX.
This node has 16 375MHz Power 3+ processors with 16GB of
shared memory. From this point we will refer to this machine
as seaborg. We also used a single node of Silicon Graphics
Onyx 3400 with 12 600 MHz IP35 processors and 24 GB of
memory. We’ll refer to this machine as escher. We also used a
PC running Linux with 2GB of memory (known as troutlake)
that has an Intel Xeon running at 3GHz and a ATI Radeon
9700 graphics card. The other PC (known as millwood) we
used has 1.5GB of memory, a Pentium 4 CPU running at
1.9GHz, and an nVidia GeForce 4 graphics card. Finally, xvc
is a small PC cluster with 6 nodes each of which has dual
2.4GHz Xeons and a GeForce 5600FX graphics card. When-
ever possible, all the available processors are used for parallel
isosurface extraction and rendering.

Three datasets were used for our tests. One contains jet
flow data with 104×129×129 voxels. The second is a CT
scan of a human head with 256×256×240 voxels. The third
one is an argon bubble dataset with 640×256×256 voxels.
Figure 2 gives sample isosurface renderings of each dataset.

5.1 Reader

The graph in Figure 3 demonstrates that our model for pre-
dicting reader performance is adequate. The over-estimation
of read time for argon bubbles is likely due to additional effi-
ciencies for continuous reads.

5.2 Isosurface Extractor

5.2.1 Analytic Uncertainty

As mentioned in the performance modeling section, the diffi-
cult thing about predicting the performance of the Isosurface

0

5

10

15

20

25

head tjet argon
File

Ti
m

e

Reader Pred Time

Reader Real Time

Figure 3: The graph on the left shows the predicted and real
times for Reader on troutlake.

Extractor is that the performance depends on the number of
triangles generated. However, it is very difficult to predict
the number of triangles that will be found prior to execution
because this is dependent on both the isolevel parameter and
the input data characteristics. It is especially important to
note that the number of triangles generated are not directly re-
lated to dataset size. We are able to model the base isosurface
extraction time for each dataset. But, without knowing the
number of triangles generated by an isolevel, we only know
that the performance will be between the base cost when no
surface is found, and the case where every voxel generates
the maximum of five triangles. We need to reduce this range
of uncertainty.

Our solution is to create a table describing how many cells
an isosurface with a certain isovalue will intersect. This can
be done at runtime by analyzing the minimum and maximum
value of each cell, and incrementing the tables at each value
that falls within this region. This allows us to approximate
how many cells an isosurface will intersect using a particu-

5



0

500

1000

1500

2000

2500

min max

Isolevel

Tr
ia

n
g

le
 C

o
u

n
t 

(x
 1

00
0)

Predicted Number Tris
Actual Number Tris

0

500

1000

1500

2000

2500

3000

3500

min max

Isolevel

Tr
ia

n
g

le
 C

o
u

n
t 

(x
 1

00
0)

Predicted Number Tris
Actual Number Tris

Figure 4: Predicted triangle counts and actual triangle counts for argon bubble(left), and head(right) datasets. Predicted number
shown as blue bars and actual number drawn as red curve. 255 samples taken at regular intervals from minimum to maximum.
The predicted and actual values are so close that it is hard to differentiate.

0

1

2

3

4

5

6

94
25

60

2E
+0

6

63
77

6

71
06

98

1E
+0

6
22

8
20

56 98
8

42
94

8 24

1E
+0

6

1E
+0

6
25

48

15
32

96

1E
+0

6

Number of Triangles

Ti
m

e

Iso Pred Time

Iso Real Time

Figure 5: Predicted and real times for isosurface extraction
on troutlake.

lar isolevel. The advantage of this technique is that it can
be done by the File Reader with little extra cost. However,
even when we know how many cells are intersected, we still
are not certain how many triangles are generated. That is,
assume there arec cells intersected, and 2 triangles per cell
on average. Then the approximate number of triangles is 2c.
However, the actual bound on the number of triangles is be-
tweenc and 4c, so our uncertainty now lies within this region.
We still are left with uncertainty, but it is narrower. Whatever
the case, in our results we demonstrate that our technique ap-
proximates quite accurately the number of triangles generated
by an isolevel, as revealed in Figure 4.

5.2.2 Results

The actual times for the Isosurfacer on troutlake were consis-
tantly longer than the predicted times(Fig. 5). This is likely
due to an inaccurateCiso (Eq. 2) measurement for troutlake,
since the results from other machines did not share this at-

0
10
20
30
40
50
60
70
80
90
100

10 1,000 100,000 10,000,000

Number of Triangles (Log Scale)

P
er

ce
n

t 
E

rr
o

r

Figure 6: Percentage error of predicted time for the isosurface
extraction. Data for graph collected from all machines on
which the isosurfacer modeling tests were run.

tribute. Whatever the case, across all machines the average
percentage error was 5.95% (Fig. 6).

5.3 Off-screen Renderer

The accuracy of our performance prediction test results for
the Off-screen Renderer on troutlake are graphed in Fig-
ure 7. Across all machines the average percentage error was
7.27% (Fig. 8). It is difficult to accurately measure rendering
times that sometimes take small fractions of a second. The
smaller the amount of time being measured, the less accu-
rate the measurement due primarily to timer granularity is-
sues. We will rectify this situation in future work by using
CPU hardware performance counters for finer-grained timing
of small-scale events.

5.4 Pipeline Performance Prediction

Next we predict the performance for the overall pipeline. We
combine networking information gathered as described in

6



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

94
25

60

2E
+0

6

63
77

6

71
06

98

1E
+0

6
22

8
20

56 98
8

42
94

8 24

1E
+0

6

1E
+0

6
25

48

15
32

96

1E
+0

6

Number of Triangles

T
im

e

Render Pred Time

Render Real Time

Figure 7: Predicted and real times for off-screen rendering on
troutlake.

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

10 10,000 10,000,000

Number of Triangles (Log Scale)

P
er

ce
n

t 
E

rr
o

r

Figure 8: Percentage error of the predicted time for the off-
screen renderer. Data for graph collected from all machines
on which the off-screen renderer modeling tests were run.

Table 1: Pipeline configurations used for testing.

Pipeline Configurations
Config Reader Isosuf Renderer Disp

1 trout escher mill sea
2 escher mill trout sea
3 sea trout escher mill
4 trout xvc mill sea
5 trout xvc xvc sea

Table 2: Predicted times for components. Times for unused
combinations omitted.

Predicted Times
Machine Reader Isosuf Renderer
troutlake 22.70 3.876 .1601
escher 54.17 8.870 19.82
millwood 45.5728 5.783 .04701
seaborg 791.6 371.03 NA
xvc NA 9.66 1.86

previous sections with our component performance models.
Since we assume that local display is fixed, we are only
concerned with modeling the performance of the pipeline
from the Reader up to deserializing the image data (see
Figure 2.1). Therefore, for our tests the machine handling
the “display” simply deserialized the image data. Table 1
lists the configurations we used. For all configurations we
used the argon bubble dataset and the same isovalue. Also,
we used a screen size of 500×500. Thus,

nv = 41,943,040, nt = 186,854, and np = 250,000.

In order to predict overall pipeline performance we first
have to predict performance of the individual components.
We used our machine-specific constants to do this and list
the results in Table 2. We should point out that none of
the pipeline stages was optimized for high performance.
For example, both the I/O and cell searching could be
optimized through a one-time preprocessing step. However,
the methodology is equally applicable to optimized pipeline
components. Omitting optimization allows us to concentrate
on the larger-scale performance predication methodology.
Optimization will become important when we are ready to
study the fine-scale matching of different pipeline stages to
reach overall high performance.

After we collect the network information we can use the
following equation to predict the performance of the pipeline:

tread+
nv

Bri
+ tiso+

nt

Bio
+ trender+

np

Bod
, (4)

7



Table 3: From top to bottom, predicted and real times for
pipeline configurations 1, 2, 3, 4 and 5.

Predicted and Real Times
Bri Bio Bod Pred Real
0.50×106 0.06×106 1.1×106 901.9 793.7
1.1×106 0.09×106 1.1×106 71.6 56.2
1.6×106 0.06×105 0.88×106 87.0 83.3
1.6×106 0.11×106 1.1×106 59.22 56.37
1.6×106 NA 1.73×106 60.34 55.72

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5

Configuration

T
im
e

Pipeline Pred Time

Pipeline Real Time

Figure 9: The predicted and real times for visualization
pipeline.

where, as introduced in section 4.4, The values for all five
configurations are listed in a table in Figure 9, as well as the
predicted and real times. Our method correctly ranks the per-
formance of the available pipelines, as can be seen in Table 3
and Figure 9.

6 Conclusions

Large-scale scientific computing is gradually moving toward
a Grid-based service model. Thus, appropriate Grid-based
visualization tools must be developed to support remote, col-
laborative data analysis making use of geographically dis-
tributed high-performance computing and storage facilities.
We have derived and experimentally verified an effective
component-based analytic performance model. Such a per-
formance model can be used to automate resource allocation
in a Grid-based computing environment. Future work in-
cludes studying computational and communication require-
ments of other visualization methods, parallel visualization
pipelines, dynamic repartitioning of visualization pipelines,
and other performance prediction techniques. In particular,
we will compare this performance modeling technique to the
heuristic and historical methodologies. Our ultimate goal is
to develop a general purpose framework for managing Grid-
based distributed visualization workflows.

Acknowledgments

This research has been sponsored in part by the National
Science Foundation under contracts ACI9983641 (PECASE
award) and ACI0325934 (ITR); the U.S. Department of
Energy under Memorandum Agreements No. DE-FC02-
01ER41202 (SciDAC program) and NO. B523578 (ASCI
VIEWS); and the Director, Office of Science, of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098. The argon bubble dataset was provided by the
Center for Computational Science and Engineering at the
Lawrence Berkeley National Laboratory. The turbulent jet
data set was provided by Dr. Robert Wilson at the University
of Iowa.

References

[1] Ripeanu, M., Iamnitchi, A. and Foster, I. Performance
Predictions for a Numerical Relativity Package in Grid
Environments. International Journal of Scientific Appli-
cations, 14 (4).

[2] Gabrielle Allen, David Angulo, Ian Foster, Gerd Lanfer-
mann, Chuang Liu, Thomas Radke, Ed Seidel, and John
Shalf. The Cactus Worm: Experiments with dynamic re-
source discovery and allocation in a grid environment. In-
ternational Journal of High Performance Computing Ap-
plications, 15(4):345–358, 2001. 11

[3] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and
evaluation of a resource selection framework for grid ap-
plications. In Proceedings of the 11th IEEE International
Symposium on High Performance Distributed Comput-
ing (HPDC11), July 2002.

[4] W. Bethel, J. Shalf. 2003. Grid-Distributed Visualizations
Using Connectionless Protocols. IEEE Computer Graph-
ics and Applications. 23(2):51-59.

[5] A. Norton, A. Rockwood. 2003. Enabling View-
Dependent Progressive Volume Visualization on the
Grid. IEEE Computer Graphics and Applications.
23(2):22-31.

[6] W. Bethel, B. Tierney, J. Lee, D. Gunter, S. Lau. 2000.
Using High-Speed WANs and Network Data Caches to
Enable Remote and Distributed Visualization. In Pro-
ceedings of SC 2000, November 2000.

[7] W. Lorensen and H. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. Computer
Graphics, 21(4):163–169, 1987.

[8] H. Dail, F. Berman, H. Casanova. 2003. A decoupled
scheduling approach to Grid application development en-
vironments. Journal of Parallel and Distributed Comput-
ing. 63:505-524

8



[9] R. Raman, M. Livny, M.H. Solomon. 1999. Matchmak-
ing: an extensible framework for distributed resource
management. Cluster Computing. 2(2):129-138.

[10] R. Wolski, N.T. Spring, J. Hayes. 1999. The Network
Weather Service: a distributed resource performance
forecasting service for metacomputing. Journal of Future
Generation Computing Systems. 15(5-6):757-768.

[11] J.S. Vetter, D.A. Reed. 1999. Managing Performance
Analysis with Dynamic Statistical Projection Pursuit.
Proceedings of SC 99, Portland, OR.

[12] I. Foster, C. Kesselman(Editors). 1999. The Grid:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann.

[13] Richard Vuduc, Attila Gyulassy, James W. Demmel,
Katherine A. Yelick. Memory Hierarchy Optimizations
and Performance Bounds for SparseATAx. 2003. ICCS
2003: Workshop on Parallel Linear Algebra, Melbourne,
Australia.

[14] Brian R. Gaeke, Parry Husbands, Xiaoye S. Li, Leonid
Oliker, Katherine A. Yelick, Rupak Biswas. 2002.
Memory-Intensive Benchmarks: IRAM vs. Cache-Based
Machines. International Parallel and Distributed Process-
ing Symposium.

[15] A. Snavely, N. Wolter, L. Carrington. 2001. Modeling
Application Performance by Converting Machine Signa-
tures with Application Profiles. IEEE 4th annual Work-
shop on Workload Characterization, Austin, TX.

9


