Erosion Modeling Analysis For DWPF MFT/SME Tanks

PDF Version Also Available for Download.

Description

This report presents the application of computational fluid dynamics (CFD) methods to qualitative estimate of the erosion phenomena expected in the actual Slurry Mixer Evaporator (SME) and MFT (Melter Feed Tank) process facilities by calculating erosion drivers. Using the transport equations governing the slurry flow, two erosion mechanisms were considered to evaluate high erosion sites and to investigate the primary cause of erosion damage for the modeling domain representative of the actual mixing process in the SME/MFT vessels. One of the two erosion mechanisms is the abrasive erosion which is worn by high wall shear of viscous liquid or by ... continued below

Physical Description

vp.

Creation Information

LEE, SI May 3, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report presents the application of computational fluid dynamics (CFD) methods to qualitative estimate of the erosion phenomena expected in the actual Slurry Mixer Evaporator (SME) and MFT (Melter Feed Tank) process facilities by calculating erosion drivers. Using the transport equations governing the slurry flow, two erosion mechanisms were considered to evaluate high erosion sites and to investigate the primary cause of erosion damage for the modeling domain representative of the actual mixing process in the SME/MFT vessels. One of the two erosion mechanisms is the abrasive erosion which is worn by high wall shear of viscous liquid or by continuous contact or low-angle collision of the moving solids with rough surface, and the other is the chip-off erosion which is mainly governed by high-angle impingement of particles. Ductile wall material such as stainless steel is damaged by wall mechanism when particles are impinged on the ductile surface of the present coil guide geometry with wide-open space and no closed- and curved-flow path. The previous results show that the primary locations of high erosion due to particle impingement are at the occurrence of sudden change of flow direction, sudden contraction, and flow obstruction.

Physical Description

vp.

Source

  • Other Information: PBD: 3 May 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2003-00435
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/824267 | External Link
  • Office of Scientific & Technical Information Report Number: 824267
  • Archival Resource Key: ark:/67531/metadc781458

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 3, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 5, 2016, 1:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

LEE, SI. Erosion Modeling Analysis For DWPF MFT/SME Tanks, report, May 3, 2004; South Carolina. (digital.library.unt.edu/ark:/67531/metadc781458/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.