LLNL ELECTRICAL SAFETY COMMITTEE
SUMMARY REPORT FOR
1993 AND 1994

W. A. NIVEN
S. R. TROST
LLNL ELECTRICAL SAFETY COMMITTEE

March, 1995

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and may or
may not be those of the Laboratory.
Work performed under the auspices of the U.S. Department of Energy by the Lawrence

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
TABLE OF CONTENTS

1.0 BACKGROUND ..1
2.0 ORGANIZATION ..1
3.0 ELECTRICAL SAFETY PHILOSOPHY ..1
4.0 MAJOR ACTIVITIES ...1
 4.1 Review of DOE's Model Electrical Safety Program ...1
 4.2 LLNL Electrical Safety Performance Measurement ...2
 4.3 Review of LLNL Electric Shock Emergency Response Policy ..3
 4.4 Thank You Letter to Encourage Reporting of Minor Electrical Shocks ..3
 4.5 Electrical Safety Improvements and Corrective Actions ..3
 4.6 Electric Shock Emergency Response Process Action Team ...4
 4.7 Revision of LLNL Health and Safety Chapter 23 ..5
 4.8 Evaluation of OSHA Training Requirements ...5
 4.9 Self-evaluation of LLNL's Electrical Safety Program ..5
 4.10 Safety Culture Improvement Program ..5
 4.11 TQM and Safety Management ...6
5.0 ELECTRICAL SAFETY COMMITTEE FORMATION
 MEMORANDUM ..7
6.0 ELECTRICAL SAFETY COMMITTEE CHARTER ...8
7.0 LLNL ELECTRICAL SAFETY COMMITTEE MEMBERSHIP ..9
8.0 LLNL ELECTRICAL SAFETY COMMITTEE SUBCOMMITTEES ..10
9.0 REVIEW OF SUPERVISOR'S ACCIDENT ANALYSIS REPORTS ..11
1.0 BACKGROUND

The Electrical Safety Committee (ESC) was formed on March 3, 1993 by Duane Sewell to advise the ES&H Council on policies, procedures and programs to improve the Laboratory's electrical safety performance. Duane Sewell's formation memorandum and charter is attached for information. With the reorganization of the Director's office in the fall of 1993, the Senior Management Council reviewed and continued the ESC's advisory function and assigned Dennis Fisher to be the cognizant Associate Director.

2.0 ORGANIZATION

The ESC is presently organized with three subcommittees: Guidelines and Regulations, Programs and Training, and Performance Measurement and Analysis. Current membership is attached for information, as well as the charters of the three subcommittees. The committee at large meets once a quarter, the Executive Committee, comprised of the Committee Chair, the Executive Secretary and the Subcommittee Chairs meets twice quarterly, and the subcommittees meet once or twice per month. Minutes of meetings are distributed to the ES&H Working Group and senior Laboratory management.

3.0 ELECTRICAL SAFETY PHILOSOPHY

The ESC agrees that electrical safety is an integral part of a comprehensive industrial safety program. There are many areas where maintaining high standards of electrical safety are very dependent on maintaining high standards of overall industrial safety.

LLNL site management uses a graded approach to safety. Serious safety deficiencies receive resources and attention immediately. Less serious deficiencies are addressed based on priorities consistent with available resources. LLNL management is committed to continuously improve safety; these philosophies are consistent with ESC actions.

4.0 MAJOR ACTIVITIES

4.1 Review of DOE's Model Electrical Safety Program

The ESC reviewed the Department of Energy (DOE) Model Electrical Safety Program early in 1994. The model program was developed by DOE to serve as guidance for the entire DOE complex for developing and maintaining an effective and sound electrical safety program.
Four ESC members were among 22 LLNL employees who attended the DOE's Model Electrical Safety Program workshop in January 1994. Following the workshop, a summary of the DOE Model Program was also presented to 24 members of Laboratory management. (One ESC member contributed to the development of the DOE Model Electrical Safety Program and was part of the workshop briefing team.) The DOE Model Program was also the subject of discussion at several ESC meetings.

In general, the ESC feels that many of the components of LLNL's safety policies and practices are commensurate with the DOE Model Electrical Safety Program. For the present, no specific policy recommendations have been developed.

DOE's Model Electrical Safety Program guidance recommends the establishment of an Authority Having Jurisdiction (AHJ) for interpreting the electrical requirements of Occupational Safety And Health Administration (OSHA), National Electrical Code (NEC), and other standards and orders applicable to the site or its facilities. The Guidelines and Regulations Subcommittee plans to develop an AHJ policy recommendation during the course of 1995.

4.2 LLNL Electrical Safety Performance Measurement

The Performance Measurement and Analysis Subcommittee has performed evaluations of LLNL Supervisor's Accident Analysis Reports (SAARs) for 1993 and 1994. The latest report is attached for information and summarized below.

A number of common themes recur in the incidents, including:

- unnecessary electrically energized work (failure to employ lock and tag procedures)
- disregard for applicable policies and procedures
- poorly maintained equipment, extension cords, plugs and receptacles
- shocks from improper handling of plugs of all types
- shocks during repair of facility air conditioning units
- shocks during overhead fluorescent light repair
- static shocks from poorly grounded vacuum cleaners

The report summarizes the SAAR electrical shock incidents according to root causes. The most common root cause category is found to be lack of knowledge or appreciation of the hazard. It is observed that a significant fraction (approximately 1/3) of such occurrences appear to be the result of negligence or disregard of policy and procedure by people who should be fully capable of understanding and appreciating the hazards at hand. Equipment condition and maintenance also continues to be a significant contributor to shock incidents, highlighting the need for periodic inspection and maintenance of items such as cords, plugs and receptacles. During the course of 1995, the ESC plans to focus further attention on improving electrical safety in the primary root cause categories.

In addition to root cause categories, the report summarizes the SAAR electrical shock incidents according to "type of work." Two questions were asked: 1) did individuals believe they were engaged in electrical work, and 2) if they believed that they were engaged in electrical work was the work intended to be performed while electrically energized?

In 9 of the 24 total incidents in 1994, the individuals that received shocks did not believe that they were engaged in
"electrical work." Examples of this type were shocks associated with office equipment and appliances such as coffee pots and static shocks from computer screens and vacuum cleaners. Of the 15 that did believe they were engaged in "electrical work," 9 did not intend that the work was to be performed in such a manner that they could come in contact with electrically energized parts. Examples in this category are insulation failure on poorly maintained equipment such as extension cords that unexpectedly exposed the worker to electrically energized parts; grounding system failures on poorly maintained equipment that unexpectedly exposed the worker to electrically energized parts that are normally at ground potential; and bypass of mechanical insulation barriers such as carelessly touching the male pins while unplugging an electrical plug from its receptacle. Examples of the 6 incidents in which the workers did believe that they could come in contact with electrically energized parts are shocks that occurred during repair of overhead fluorescent lights and facility air conditioning units.

The LLNL Supervisor's Accident Reports are generally a good source of summary information from which real indicators can be extracted. However, the Performance Measurement and Analysis Subcommittee feels that there are several areas that can be improved and strengthened and plans to address these in 1995. Also, the subcommittee plans to examine in greater depth the accident/near-miss severity trends.

4.3 Review of LLNL Electric Shock Emergency Response Policy

The ESC strongly supports LLNL's policy of reporting all electrical shock incidents, however minor, and transporting the victim to medical. The policy of reporting all electric shock incidents is designed to provide not only maximum protection for the health of the workers involved, but is also of vital importance in providing the opportunity to improve electrical safety.

4.4 Thank You Letter to Encourage Reporting of Minor Electrical Shocks

As a positive incentive to encourage people to report minor electrical shock incidents, the ESC recommends that individuals who report electric shock incidents and are transported to medical should be formally thanked by LLNL management.

Beginning in November, 1994, a thank you letter signed by Stan Trost as ESC Chairman is sent to anyone that reports an electrical shock incident and goes to medical.

4.5 Electrical Safety Improvements and Corrective Actions

Information that is learned from analyzing electrical safety incidents is used to make corrections and improvements in work practices, equipment safety, worker education and training, etc. Examples of such electrical safety improvements and corrections are as follows:

- In a number of incidents, it was found that employees did not properly recognize and deal safely with energized electrical work situations. A new Hazards Control Course to teach OSHA energized electrical work requirements in the R&D electronics context has been developed to respond in part to this problem. Two classes have been given to date with a total of approximately 50 employees attending. To the best of our knowledge this is the first course of its type in the DOE complex, and possibly in the country.
- In several incidents, lockout/tagout training was not adequately translated into safe work practices. Follow-up actions were taken by the
individuals' supervision. Lockout/tagout guidance and training is being revised.

- System documentation deficiencies have been a contributing cause of a number of shocks. In part to address this problem, a new Electrical Engineering Standard on Electronics Documentation, Engineering Quality, and Configuration Management has been issued.

- One shock was caused by defective grounding in older Plugmold outlet strips. Safety alerts were issued calling for the defective equipment to be replaced.

4.6 Electric Shock Emergency Response Process Action Team

As an Engineering initiative, an Electric Shock Emergency Response Process Action Team (PAT) was established in March 1994. The PAT was established as a direct result of one of the findings in the ADGAP Institute’s safety system assessment of the Engineering Directorate in September 1993. ADGAP reported employees' estimates that one half of all minor electric shocks may go unreported as a result of a number of disincentives for reporting the incidents.

If half of the minor electric shocks that occur are not reported, then an important flow of information is missing about workplace hazards and potential causes that could lead to a serious accident. It is therefore of critical importance to safety improvement that barriers to reporting minor shocks and near misses be eliminated or reduced and incentives be increased. The PAT’s objective is to recommend a new improved policy for on-scene evaluation of electric shock incidents, improved emergency response processes, and improved processes for gathering of information for incident analysis and follow up actions.

So far, the PAT has defined the present emergency response process and tentatively mapped out a safety system improvement process. The PAT has also identified and prioritized a number of incident reporting disincentives which include fear, miscommunication, program attitude, historical work environment, and visibility of the emergency response. These are described further below:

- Fear includes such factors as having done a job wrong or the wrong job, the numerous interviews that the individual is subjected to, personal embarrassment, over response, potential impact on performance appraisal, potential impact on salary, and peer pressure.

- Miscommunication includes factors such as self-evaluation of severity of a shock and its consequences, denial, lack of knowledge or incorrect beliefs about how information from the root-cause process will be used, and poor training in Laboratory policy.

- Program attitude includes factors such as taking shortcuts to meet perceived program objectives and lack of clear LLNL policy communication and follow-through on reporting of shocks.

- Historical work environment includes factors such as culture support system (includes "macho" attitude), and a false sense of security stemming from having been shocked several times before without adverse consequences and believing that being shocked is a normal consequence of the job.

- Visibility of the emergency response is associated with the embarrassment that individuals have with being transported to medical in the ambulance when in fact there may be no serious injury.

The PAT expects to complete its current work by June 1995. The PAT will
address those disincentives that are
within its charter, such as embarrassment
and fear of the medical system, but many
of the most important disincentives
involve organizational and cultural
issues that are beyond the PAT's
purview. Examples of the latter include
fear of retaliation in salary or ranking
(whether well-founded or not), policy
communication, and others.

4.7 Revision of LLNL Health and
Safety Chapter 23

The Guidelines and Regulations
Subcommittee has actively participated
in the extensive revision and editing of
LLNL's Health and Safety Chapter 23 to
incorporate OSHA requirements. The
ESC completed its review at the end of
1994. The draft is currently being
finalized by TID and will be submitted
to the ES&H Working Group and
Laboratory management for final review,
approval, and release.

4.8 Evaluation of OSHA Training
Requirements

The Electrical Safety Programs and
Training Subcommittee is evaluating
OSHA electrical safety training
requirements for the Laboratory's
various electrical hazard exposure
groups. A focus group of Electrical
Engineering, Mechanical Engineering,
and Plant Engineering technician
supervisors, and the Electrical
Engineering and Hazards Control Safety
Engineers was created by the
subcommittee. The focus group
developed a matrix of OSHA training
requirements correlated with the
Laboratory's various electrical hazard
exposure groups, and expects to issue its
findings early in 1995. Review of the
adequacy of LLNL's training classes by
the subcommittee will follow later in
1995.

4.9 Self-evaluation of LLNL's
Electrical Safety Program

In March 1993 the ESC participated in
drafting LLNL's Electrical Safety Self-
Evaluation which was submitted to
DOE. This was the first attempt to
comprehensively evaluate the strengths
of LLNL's electrical safety elements and
practices and to identify areas needing
improvement.

4.10 Safety Culture Improvement
Program

The ESC endorses and encourages
organizations across the Laboratory to
develop a positive industrial and
electrical safety improvement
environment. The ESC notes Plant
Engineering's substantial effort toward
this end.

Beginning approximately four years ago,
working with safety consultants, Plant
Engineering established a safety culture
improvement program that is beginning
to achieve success. Their Safety Council
is employee run. It has wide latitude to
develop safety policy with management,
affect work practices, influence worker
safety attitudes and promote worker
safety involvement. Safety
communication throughout Plant
Engineering has improved, employee
involvement has increased, their safety
suggestion program is strong, their
reporting of minor accidents has
increased significantly, and most
importantly, their reportable accident
rates have decreased by approximately
25% between December 1993 and
December 1994 and are substantially
lower than those for comparable work in
industry.
4.11 TQM and Safety Management

LLNL Engineering sponsored a working conference in November 1993 to explore state-of-the-art Total Quality Management (TQM) concepts and methodologies as a means for managing and improving safety. The conference was well attended by safety managers from a number of industrial companies and government laboratories including Dupont, General Electric, Stanford Linear Accelerator, Sandia Corporation and LLNL. The conference was viewed as highly successful by the participants as all are looking for ways to improve safety performance and TQM concepts are at the center of many of their new safety management strategies. All agreed that more research is needed to find more and better ways to improve safety performance in their respective organizations. Because of the interest that has been generated, a follow-on working conference is planned this spring in Albuquerque.
MEMORANDUM

TO: Distribution
FROM D. C. Sewell
SUBJECT: ELECTRICAL SAFETY COMMITTEE MEMBERSHIP

An Electrical Safety Committee (ESC) has been formed to advise the ES&H Council on policies, procedures and programs to improve the Laboratory's electrical safety performance. Stan Trost, Committee Chair, submitted a proposed list of Committee members which I approved:

Henry Bell
Charles Cain
Curtis Clower
Donald B. Davis
Dick Emmert
Robert Hornaday
Jim Jackson
Dick O'Neil
Orville Paul
Paul Weber
Bill Nevin, Executive Secretary

I want to thank each of you for your willingness to assist the Laboratory concerning electrical safety. The Electrical Safety Committee will have an important role in assuring the safe conduct of operations at LLNL.

DCS: sl

Distribution: Electrical Safety Committee Members

Information:
D. R. Beach
G. W. Campbell
J. W. Cook
R. A. Corallo
G. E. Cummings
A. J. Toy
S. R. Trost
CHARTER
ELECTRICAL SAFETY COMMITTEE

PURPOSE

The Electrical Safety Committee advises the ES&H Council on policies, procedures, and programs to improve LLNL's electrical safety performance.

MEMBERSHIP

The Deputy Director will appoint a chairperson. The chairperson will appoint committee members, subject to approval by the Deputy Director. Members are selected from Laboratory management, professional and technical staff and are expected to have technical competence in electrical systems and represent LLNL organizations.

FUNCTIONS

The Electrical Safety Committee serves in an advisory capacity to the ES&H Council. The Electrical Safety Committee:

- Develops and updates criteria to be used for electrical safety performance measurement and recommends these for approval by the ES&H Council.

- Sponsors appropriate employee-management subcommittees or working groups and serves as a conduit to ensure that employee concerns and suggestions on electrical safety improvement are brought before the ES&H Council.

- Sponsors analytical activities requested by the ES&H Council or originated by the Electrical Safety Committee.

- Reviews Incident Analyses, occurrence reports and near misses relating to electrical safety; identifies lessons learned and common themes, i.e., root cause, and distributes this information to Laboratory management.

- Conducts annual reviews of the Health and Safety Manual, Chapter 23.

- Reviews existing electrical safety programs; recommends new programs as appropriate.

- Reviews electrical safety training and provides recommendations to the Training Program Oversight Committee concerning suggested improvements.

Approved: Duane C. Sewell
ES&H Council Chairman

Date: 1-8-93
LLNL ELECTRICAL SAFETY COMMITTEE

MEMBERSHIP

1/15/95

Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henry Bell</td>
<td>Energy Programs</td>
</tr>
<tr>
<td>Charles Cain</td>
<td>Plant Engineering/Maintenance and Operations</td>
</tr>
<tr>
<td>Curtis Clower</td>
<td>Laser Programs/ICF</td>
</tr>
<tr>
<td>Donald B. Davis</td>
<td>Computations</td>
</tr>
<tr>
<td>Don T. Davis</td>
<td>Engineering Research Division</td>
</tr>
<tr>
<td>Ros Marrs</td>
<td>Physics</td>
</tr>
<tr>
<td>Jim Jackson</td>
<td>Hazards Control</td>
</tr>
<tr>
<td>Bill Niven</td>
<td>Laser Engineering Division</td>
</tr>
<tr>
<td>Orville Paul</td>
<td>Plant Operations/Assurance Office</td>
</tr>
<tr>
<td>Stan Trost</td>
<td>Electronics Engineering</td>
</tr>
<tr>
<td>Paul Weber</td>
<td>Laser Programs/ISAM</td>
</tr>
</tbody>
</table>

Associates:

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don Campbell</td>
<td>Safety Engineer, Laser Engineering Division</td>
</tr>
<tr>
<td>Martin Loomis</td>
<td>Cochair, Engineering Technical Safety Steering Committee</td>
</tr>
<tr>
<td>Larry Moon</td>
<td>Staff Engineer, Assurance Review Office</td>
</tr>
<tr>
<td>William Silver</td>
<td>Safety Engineer, Hazards Control</td>
</tr>
<tr>
<td>Ed Vittorio</td>
<td>Safety Engineer, Hazards Control</td>
</tr>
<tr>
<td>Jim Wells</td>
<td>Plant Engineering, Maintenance and Operations</td>
</tr>
<tr>
<td>John Wilson</td>
<td>Safety Engineer, Engineering</td>
</tr>
</tbody>
</table>
LLNL ELECTRICAL SAFETY COMMITTEE

SUBCOMMITTEES

1/15/95

Members:
Curtis Clower Chair
Orville Paul Alt Chair
Don T. Davis
Jim Jackson

Associates:
Don Campbell
Ed Vittorio
John Wilson

Members:
Charles Cain Chair
Don B. Davis
Bill Niven

Associates:
Ed Vittorio
Jim Wells

Members:
Paul Weber Chair
Henry Bell
Don T. Davis
Orville Paul

Associates:
Larry Moon
William Silver
Ed Vittorio
TO: Distribution
FROM: P. D. Weber
SUBJECT: Review of Supervisor's Accident Analysis Reports

Following are the results of an evaluation conducted by the LLNL Electrical Safety Committee, Subcommittee on Performance Measures, of electrical safety incidents for the second half of calendar year 1994. This is the third such analysis performed. Data from the previous analysis covering calendar year 1993, and for the first half of 1994, is also presented for comparison. We have attempted to group incidents by general cause and type of work involved. For the first time we have also included information from "near misses", even if these did not result in Supervisors Accident Analysis Reports (the primary source of information for shock incidents).

<table>
<thead>
<tr>
<th>Causes (some accidents had more than one root cause)</th>
<th>1993</th>
<th>1/94 - 6/94*</th>
<th>7/94 - 12/94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of incidents evaluated</td>
<td>30</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Lack of knowledge or appreciation of hazard</td>
<td>15</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Equipment condition/maintenance</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Equipment appropriateness</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Design, fab, or installation error</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Communication (wrong information)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Could not determine</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*revised due to late data

University of California

Lawrence Livermore National Laboratory
Twe of Work

Did worker believe he was engaged in "electrical work"?

<table>
<thead>
<tr>
<th></th>
<th>1993</th>
<th>1/94-6/94</th>
<th>7/94-12/94</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>18</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>88%</td>
<td>53%</td>
</tr>
<tr>
<td>no</td>
<td>12</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>22%</td>
<td>47%</td>
</tr>
</tbody>
</table>

If electrical work, was it intended to be "hot work"?

<table>
<thead>
<tr>
<th></th>
<th>1993</th>
<th>1/94-6/94</th>
<th>7/94-12/94</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>33%</td>
<td>43%</td>
<td>38%</td>
</tr>
<tr>
<td>no</td>
<td>12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>67%</td>
<td>57%</td>
<td>62%</td>
</tr>
</tbody>
</table>

Type of Electrical Work

<table>
<thead>
<tr>
<th>Type of Electrical Work</th>
<th>1993</th>
<th>1/94-6/94</th>
<th>7/94-12/94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility/utility</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>44%</td>
<td>29%</td>
<td>25%</td>
</tr>
<tr>
<td>Research</td>
<td>9</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>71%</td>
<td>75%</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A number of common themes recur in these incidents, including:

- static shocks from poorly grounded vacuum cleaners
- poorly maintained cords and plugs
- shocks from handling plugs of all types
- shocks during repair of air conditioning units
- unnecessary hot work (failure to employ lock and tag)
- shocks during fluorescent light repair
- disregard for policy and procedure (even when warned)

The primary root cause category continues to be lack of knowledge or appreciation of the hazard. We have observed, however, that a significant fraction (approximately 1/3) of such occurrences appear to be the result of negligence or disregard, by people who should be fully capable of understanding and appreciating the hazards at hand.

These trends will continue to be examined and reported periodically.

Paul D. Weber
Electrical Safety Committee

PDW:lg