Radiation Effects on Sorption and Mobilization of Radionuclides during Transport through Geosphere

PDF Version Also Available for Download.

Description

Site restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities involve working with and within various types and levels of radiation fields. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance material properties. The principal sources of radiation at the DOE sites are the actinides and fission-products contained in high-level wastes currently in storage. Alpha-decay of the actinide elements and beta-decay of the fission products lead to atomic scale changes in the material (radiation damage and transmutation). During site restoration, materials will be exposed ... continued below

Physical Description

vp.

Creation Information

Wang, L.M.; Ewing, R.C. & Hayes, K.F. March 14, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Site restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities involve working with and within various types and levels of radiation fields. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance material properties. The principal sources of radiation at the DOE sites are the actinides and fission-products contained in high-level wastes currently in storage. Alpha-decay of the actinide elements and beta-decay of the fission products lead to atomic scale changes in the material (radiation damage and transmutation). During site restoration, materials will be exposed to radiation fields that exceed 104 rad/hr. The radiation exposure due to the release and sorption of long-lived actinides (e.g., 237Np) and fission products (e.g., 137Cs and 90Sr) may cause changes in important properties (e.g., cation exchange capacity) in geological materials (e.g., clays and zeolites) along transport pathways. Among these materials, clays and zeolites, which are expected to sorb and immobilize radionuclides, are known to be extremely susceptible to radiation-induced structure changes (e.g., bubble formation and solid state amorphization) through both collisional displacement and ionization processes. These changes will inevitably affect (either negatively or positively) the further sorption and the migration of radionuclides at waste sites (e.g., vadose zone at Hanford). Current models used for the longterm prediction of radionuclide transport have proven to be inadequate and unrealistic; however, these previous models did not take radiation effects into consideration.

Physical Description

vp.

Source

  • Other Information: PBD: 14 Mar 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-73762-2001
  • Grant Number: FG-96ER45652
  • DOI: 10.2172/834359 | External Link
  • Office of Scientific & Technical Information Report Number: 834359
  • Archival Resource Key: ark:/67531/metadc781453

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 14, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 3:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wang, L.M.; Ewing, R.C. & Hayes, K.F. Radiation Effects on Sorption and Mobilization of Radionuclides during Transport through Geosphere, report, March 14, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc781453/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.