SiAlON COATINGS OF SILICON NITRIDE AND SILICON CARBIDE

PDF Version Also Available for Download.

Description

The need for new engineering materials in aerospace applications and in stationary power turbine blades for high-efficiency energy-generating equipment has led to a rapid development of ceramic coatings. They can be tailored to have superior physical (high specific strength and stiffness, enhanced high-temperature performance) and chemical (high-temperature corrosion resistance in more aggressive fuel environments) properties than those of monolithic ceramic materials. Among the major chemical properties of SiAlON-Y ceramics are their good corrosion resistance against aggressive media combined with good thermal shock behavior. The good corrosion resistance results from the yttria-alumina-garnet (YAG), Al{sub 5}Y{sub 3}O{sub 12}, formed during the corrosion ... continued below

Physical Description

20 pages

Creation Information

Nowok, Jan W.; Hurley, John P. & Kay, John P. June 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • University of North Dakota
    Publisher Info: University of North Dakota (United States)
    Place of Publication: [Grand Forks, North Dakota]

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The need for new engineering materials in aerospace applications and in stationary power turbine blades for high-efficiency energy-generating equipment has led to a rapid development of ceramic coatings. They can be tailored to have superior physical (high specific strength and stiffness, enhanced high-temperature performance) and chemical (high-temperature corrosion resistance in more aggressive fuel environments) properties than those of monolithic ceramic materials. Among the major chemical properties of SiAlON-Y ceramics are their good corrosion resistance against aggressive media combined with good thermal shock behavior. The good corrosion resistance results from the yttria-alumina-garnet (YAG), Al{sub 5}Y{sub 3}O{sub 12}, formed during the corrosion process of SiAlON-Y ceramics in combustion gases at 1300 C. The interfacial chemical precipitation of the YAG phase is beneficial. This phase may crystallize in cubic and/or tetragonal modifications and if formed in SiAlON-Y ceramic may simultaneously generate residual stress. Also, this phase can contain a large number of point defects, which is a consequence of the large unit cell and complexity of the YAG structure because it has no close-packed oxygen planes. Therefore, the need exists to elucidate the corrosion mechanism of a multilayered barrier with respect to using SiAlON-YAG as a corrosion-protective coating. Stress corrosion cracking in the grain boundary of a silicon nitride (Si{sub 3}N{sub 4}) ceramic enriched in a glassy phase such as SiAlON can significantly affect its mechanical properties. It has been suggested that the increased resistance of the oxynitride glass to stress corrosion is related to the increased surface potential of the fracture surface created in the more durable and highly cross-linked oxynitride glass network structure. We expect that either increased or decreased surface potential of the intergranular glassy phase is brought about by changes in the residual stress of the SiAlON-Y ceramic and/or creation of a space-charge region at the SiAlON-YAG interface. Both features originate from a secondary phase of YAG formed during the SiAlON-Y glass corrosion process. Conventional oxidation-protection coatings for metallic materials in high-temperature corrosive environments are typically formed by applying a slurry mixture to the surface followed by a high-temperature furnace cure. During the cure, the coating reacts with the alloy to form a layer typically 25 to 50 {micro}m{sup 3} thick. Generally, coating thickness is one critical microstructural parameter that influences its performance; therefore, its optimization is an important aspect of coating technology. The aim of the present research program is (1) to produce a thin SiAlON-YAG ceramic coating with a high quality of interface, (2) to understand the major experimental characteristics for creating a good bonding between a substrate and a thin coating, and (3) to explain why the Al{sub 5}Y{sub 3}O{sub 12} phase increases SiAlON-Y ceramic alkali corrosion resistance. To produce the SiAlON-Y coating on silicon nitride ceramic with a YAG layer, a slurry mixture of SiAlON-Y components was designed. The research program was extended to Y{sub 2}SiO{sub 5} coating to get preliminary information on the Si{sub 3}N{sub 4}-Y{sub 2}SiO{sub 5} interface microstructure. It was expected that this phase would have a very low porosity. Generally, coatings that contain ductile phases such as Y{sub 2}SiO{sub 5} can produce low-porosity coatings.

Physical Description

20 pages

Notes

OSTI as DE00824976

Source

  • Other Information: PBD: 1 Jun 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-98FT40320
  • DOI: 10.2172/824976 | External Link
  • Office of Scientific & Technical Information Report Number: 824976
  • Archival Resource Key: ark:/67531/metadc781443

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2000

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Feb. 20, 2017, 12:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nowok, Jan W.; Hurley, John P. & Kay, John P. SiAlON COATINGS OF SILICON NITRIDE AND SILICON CARBIDE, report, June 1, 2000; [Grand Forks, North Dakota]. (digital.library.unt.edu/ark:/67531/metadc781443/: accessed December 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.