I. Introduction.

The research is based on the observation that despite the extraordinarily rich coordination chemistry of technetium and rhenium and several notable successes in reagent design, the extensive investigations by numerous research groups on a variety of \(\text{N}_2\text{S}_2 \) and \(\text{N}_3\text{S} \) donor type ligands and on HYNIC have revealed that the chemistries of these ligands with Tc and Re are rather complex, giving rise to considerable difficulties in the development of reliable procedures for the development of radiopharmaceutical reagents. It is now evident that the \text{MAG}_3 technology offers well-defined reagents which are relatively unstable under imaging conditions; in contrast, the HYNIC analogues are chemically robust but less well-defined and poorly characterized at the tracer level. Consequently, the proposed research will focus on the development of an innovative approach to labeling peptides with technetium (\({}^{99}\text{m}\text{Tc} \)) and rhenium (\({}^{186}\text{Re} \) and \({}^{188}\text{Re} \)), by creating single amino acid analogs applicable to current peptide synthetic methods and to bifunctional conjugate strategies that will provide facile and stable complex formation. The work outlined in the following sections focuses on the development of synthetic strategies and the radiolabeling and testing of \({}^{99}\text{m}\text{Tc} \)-labeled peptides containing single amino acid analogue chelates as novel imaging probes. The objective is the design of a family of single amino acid chelators (SAAC) based on pyridyl, carboxylate and/or thiolate derivatized lysine, alanine and diamino diacids for conjugation to small peptides by solid phase synthetic techniques.

The investigations summarized in this section evolve from the demonstration that the technetium-organohydrazino core can be exploited in the development of \({}^{99}\text{m}\text{Tc} \)-peptide conjugates and that the identity of the coligand may dramatically influence the pharmacological preparation, as well as the biodistributions of the compounds. These
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
observations drove the elaboration of the coordination chemistry of the Tc-organohydrazino core and the development of novel coligands. However, the extensive investigations on the coordination chemistry of the Tc-hydrazino system led us to conclude that the organohydrazines are inferior chelates and that alternative approaches to effective labeling should be explored. The preliminary studies on the development of the single amino acid analog chelators exploiting the \{Tc(CO)3\}$^{+1}$ core represent a novel strategy for the development of imaging agents.

II. The Technetium(III)-Bishydrazino core \{Tc(H$_2$NNR)$_2$\}$^{n+}$ in 99mTc-Labeled Chemotactic Peptide Derivatives. We have developed chemotactic peptides which incorporated the 99mTc binding group HYNIC (hydrazinonicotinamide). This complexing agent when added to the lysine extended C-terminus of the peptide sequence enabled robust labeling at high specific activity. Separation of the unlabeled peptide from the technetium-labeled peptide was easily achievable on HPLC and facilitated by the nature of the starting technetium complex.

A significant structural feature associated with the [Tc(HYNIC-peptide)$_x$(coligand)$_y$] reagents is the necessity of a multidentate coligand to bond to the remaining available coordination sites about the Tc(III)-organohydrazino core. By varying the identity of the coligand, we have demonstrated that the distribution of 99mTc-labeled-HYNIC derivatized chemotactic peptides may be modulated. This study employed analogs of the polyhydric ligand, glucoheptonate, which was initially employed to facilitate 99mTc radiolabeling of the HYNIC moiety of both proteins and peptides. The compounds used (glucoheptonate, mannitol, glucarate and glucamine) provided a small series of hydroxyl-backbone ligands which differ in the number and type of ionizable functional groups. At imaging times of 3 and 18 h, [\(^{99m}\)Tc(HYNIC-f-MLFK)$_x$(mannitol)$_y$] had the lowest levels of accumulation in bowel and the highest level of accumulation in infected tissue. In addition to influencing biodistribution and excretion, the choice of coligand significantly affects other chemical and biological properties of the conjugates, such as the stoichiometry of the complex, chromatographic separation of labeled and unlabeled peptide and targeting of infection. For infection imaging, peptide radiolabeled with 99mTc-mannitol has the most favorable combination of concentration in infected tissue, T/B ratio and biodistribution in infected organs.
However, it is significant that thiolate-based ligands appear to offer considerable advantages in purity of preparations and stability of the complexes.

This latter observation led to the development of a class of tridentate ligands, such as bis(mercaptoethyl)methylamine (NS₂), which may constrain the possible coordination geometries and improve overall stability. To investigate this hypothesis, we synthesized NS₂, converted the [Tc(HYNIC-f-MLFK)₃(mannitol)] to the corresponding NS₂ containing complex [Tc(HYNIC-f-MLFK)₂(NS₂)], and compared its infection imaging and biodistribution properties with [Tc(HYNIC-f-MLFK)₃(mannitol)]

Figure 1. Right: representative whole-body anterior images of rabbits at 3 and 18 h after injection of [⁹⁹ᵐTc(HYNIC-f-MLFK)₃(mannitol)] (left) and [⁹⁹ᵐTc(HYNIC-f-MLFK)₂(NS₂)] (center and right). Center: Average values of tissue concentration of [⁹⁹ᵐTc(HYNIC-f-MLFK)₃(mannitol)] and [⁹⁹ᵐTc(HYNIC-f-MLFK)₂(NS₂)] in rabbits at 18 h after intravenous injection. Right: Average values of infected to normal muscle (open bars) and pus to normal muscle (solid bars) ratios at 18 h after injection of [⁹⁹ᵐTc(HYNIC-f-MLFK)₃(mannitol)] and [⁹⁹ᵐTc(HYNIC-f-MLFK)₂(NS₂)].

HPLC, ROI analysis, and tissue radioactivity measurements indicate that the [Tc(HYNIC-f-MLFK)₂(NS₂)] complex is chemically homogeneous and exhibits improved infection localization and biodistribution properties (Figure 1).

In order to provide a structural basis for the interaction of the {Tc-HYNIC} core with NS₂ and related ligand types, the reactions of [MCl₃(NNC₃H₄NH)(NHNC₃H₄N)] [M = Tc (1a), Re (1b)] (see Figure 2) with CH₃N(CH₂CH₂SH)₂ (NS₂), C₅H₅N-2,6-(CH₂SH)₂

Figure 2. The structure of [TcCl₃(NNC₃H₄NH)(NHNC₃H₄N)].
and O(CH$_2$CH$_2$SH)$_2$, as well as the bidentate N,S-donor ligands pyridine-2-thiol and 3-(trimethylsilyl)pyridine-2-thiol, were investigated. The resulting thiolate derivatized complexes of the \{M-HYNIC\} core, [M(CH$_3$N(CH$_2$CH$_2$S)$_2$)(NNC$_3$H$_4$N)(NHNC$_3$H$_4$N)] (M = Tc (2a), Re (2b)), [Re(C$_3$H$_3$N-2,6-(CH$_2$S)$_2$)(NNC$_3$H$_4$N)(NHNC$_3$H$_4$N)] (3), [Re{O(CH$_2$CH$_2$S)$_2$}(NNC$_3$H$_4$N)(NHNC$_3$H$_4$N)] (4), [ReCl(C$_3$H$_4$N-2-CH$_2$S)(NNC$_3$H$_4$N)(NHNC$_3$H$_4$N)] (5), and [Re(2-SC$_3$H$_3$N-3-SiMe$_3$)$_2$(NNC$_3$H$_4$N)(NHNC$_3$H$_4$N)] (6) were characterized spectroscopically, and in the instances of 2b, 3 and 5 by x-ray crystallography.

The model chemistry invariably shows the presence of the technetium(III)-bisorganohydrazino core, \{Tc(H$_2$NNR)$_2$\}$^{n+}$. However, in the case of the technetium complex of HYNIC-peptide with tricine and triphenylphosphine as coligands, Liu and Edwards have convincingly demonstrated that the complex formed is formulated as the Tc-monohydrazino species, [Tc(HYNIC-peptide)(η4-H$_2$tricine)(PPh$_3$)]. In order to reconcile the apparent contradictions, we undertook a detailed investigation of the model chemistry of the metal-organohydrazino core, for M = Tc and Re.

Our earlier investigations suggested that chelating organohydrazine ligands in the presence of phosphine coligands yielded monohydrazino species of which [Re{NNC(O)Ph}Cl$_2$(PPh$_3$)$_2$] (7) is representative. We confirmed this observation using

Figure 3. The structures of [Re(HYNIC-lysine)Cl$_2$(PPh$_3$)$_2$] (7) (left) and [Re(HYNIC-lysine)(Me$_2$EDDA)(PPh$_3$)] (8) (right).
HYNIC-lysine as a model for the HYNIC-peptide and dimethylethlenediaminediacetic acid as the N,O-donor coligand in the presence of triphenylphosphine (Figure 3). As anticipated, the ultimate product [Re(HYNIC-lys)(Me₂EDDA)(PPh₃)] (8) exhibits a single coordinated HYNIC unit and, curiously, a monodentate coordination mode. Subsequently, a series of model compounds, incorporating a range of polyhydric and N,S-donor ligands was prepared and structurally characterized, including [Tc(NNC₅H₄N)(PPh₃)(η³-H₂tricicne)] (9), [Tc(HNNC₅H₄N)(NNC₅H₄NH)(η³-H₄mannitol)] (10), [TcCl(HNNC₅H₄N)(NNC₅H₄N)(η²-SCH₂C₅H₄N)] (11) and [Tc(HNNC₅H₄N)(NNC₅H₂N)(SCH₂)₁₂C₅H₃N)] (12), shown in Figure 4. These results confirm that the Tc-bishydradino core is persistent, but that in the presence of triphenylphosphine and/or certain polyhydric ligands, the monohydradino core may be isolated.
The series of compounds \([\text{Re}(\text{HNCC}_3\text{H}_4\text{N})(\text{NCC}_3\text{H}_4\text{NH})\text{Cl}_3] (1b),\)
\([\text{Re}(\text{HNCC}_3\text{H}_4\text{N})(\text{NCC}_3\text{H}_4\text{NH})\{((\text{SCH}_2)_2\text{C}_5\text{H}_3\text{N})\} (13), [\text{Re}(\text{HYNIC-lys})_2\text{Cl}_3] (14), [\text{Re}(\text{HYNIC-lys})_2\{((\text{SCH}_2)_2\text{C}_5\text{H}_3\text{N})\} (15), [\text{Re}(\text{HYNIC-f-MLFK})_2\text{Cl}_3] (16)\) and
\([\text{M}(\text{HYNIC-f-MLFK})_2\{((\text{SCH}_2)_2\text{C}_5\text{H}_3\text{N})\} (17)\) were prepared and characterized by elemental analysis, \(^1\text{H}-\text{nmr}, ^{13}\text{C}-\text{nmr}, 2-\text{D-nmr},\) and mass spectroscopy. The results were consistent with the presence of the \(\{\text{M}(\text{HYNIC-R})_2\}^{\text{R}+}\) core in all cases. A view of the structure of 17 with \(\text{M} = \text{Tc}\), based upon mass spectroscopy and nmr fitting, is shown in Figure 5.

![Figure 5. Proposed structure of the radiolabeled conjugate [Tc{(SCH2CH2)2NCH3})(HYNIC-f-MLFK)_2] (17).](image)

These structural results are significant in view of the improved target accumulation and background reduction associated with \([\text{Tc}(\text{HYNIC-f-MLFK})_2\{((\text{SCH}_2)_2\text{C}_5\text{H}_3\text{N})\}]\). First, the structures of the model coordination compounds suggest that the peptides (not the \(\alpha\)-nitrogens atoms of the HYNIC moieties) adopt a \textit{trans} orientation. This minimizes the steric interface of the two peptides with each other and may allow either peptide access to the formyl-MLF receptor. If the peptides were \textit{cis} to each other they may interfere with bonding to the receptor by interacting with each other or by sterically blocking the approach of the other to the receptor. This speculation has yet to be proven; however, the fact that the \(\alpha\)-nitrogen of HYNIC will not coordinate \textit{trans} to the \(\alpha\)-nitrogen of a second HYNIC would dispose the peptides in a mutually \textit{trans} arrangement. Furthermore, the improvement in biological behavior may be derived from the likelihood that \textit{in vivo} ligand substitution (\textit{via} glutathione or cysteine) is unfavorable due to the tridentate nature of NS2. Previous work with the bidentate pyridinethiol and pyrimidinethiol showed two pyridinethiol ligands attached to the metal core: one bidentate and one monodentate through the sulfur. The monodentate
pyridinethiol is potentially labile due to the single attachment mode and the trans influence of the sulfur from the bidentate pyridinethiol. On the other hand, the NS$_2$ ligand may enhance the persistence of the complex by adopting a meridional coordination mode for a tridentate chelate.

While these results were significant, several observations made in the course of these investigations were less encouraging. In contrast to the pyridylhydrazino derivative 1b, the HYNIC analogue [Re(HNNC$_3$H$_4$N-4-CO$_2$H)(NNC$_3$H$_4$NH-4-CO$_2$H)Cl$_3$] (18) can only be isolated in 60% yield from a mixture which also contains a significant amount of a monohydrazino material of composition [Re$_2$O(HYNIC)$_2$Cl$_4$(solvent)] (19) from elemental analysis, mass spectroscopy and nmr analysis. The relative amount of 19 formed is dependant on the MeOH/H$_2$O ratio of the reaction mixture, increasing with H$_2$O content. Since labeling studies are carried out in aqueous media, purification and yield concerns appear to be issues innate to the chemistry. Furthermore, the coligand chemistry is not without complications. The reactions of 18 with various thiolate coligands, including pyridinethiol, \{(SCH$_2$)$_2$NCSH$_2$\}2, and mercatomethylimidazole, invariably produces the desired product, such as 20, and a binuclear species of which [Re$_2$O(H$_4$NNC$_3$H$_4$N)$_4$(SC$_3$H$_2$N$_2$CH$_3$)$_2$] (21) is characteristic (see Figures 6-8). These observations dramatically illustrate the inherent difficulties associated with the coordination chemistry of the Tc-Re-organohydrazino system which must be overcome in developing an effective imaging agent.

![Figure 6. The structure of 18.](image1)
![Figure 7. The structure of 20.](image2)
![Figure 8. The structure of 21.](image3)
III. Bifunctional chelates for use in activated automated peptide synthesis.

III. 1. The Metal Precursor: The \(\{M(CO)\}_3^{+1} \) Core. While the HYNIC approach to infection imaging proved successful, there were a number of disadvantages: the synthesis of the HYNIC-peptide conjugate is quite involved and the coordination/coligand chemistry results in additional synthetic and structural complexities. Consequently, we concluded that it would be expedient to develop approaches exploiting other Tc-core substructures. Recently, the remarkable Tc(1) core \(\{\text{Tc}(CO)\}_3^{+1} \) has been demonstrated to provide an ideal geometry for the labeling of receptor and biomolecules with high specific activity with retention of the biological activity and specificity.

The Tc(I)-tricarbonyl core offers a numbers of advantages for the design of novel radiopharmaceuticals: (i) Alberto and coworkers developed a facile route to the important intermediate \(\{M(H_2O)\}_3(CO)\}_3^{+} \) from the permetalate salt \(M_{O_4} \) under atmospheric pressure of CO and exploiting a reducing agent such as NaBH₄; (ii) the complexes are water-soluble and readily undergo ligand exchange; (iii) the \(\{\text{Tc}(CO)\}_3^{+1} \) core is chemically robust and maintains its integrity under the most forcing conditions; (iv) the organometallic nature of the core renders chelation more covalent in character.

III. 2. Ligand design and coordination chemistry. Ligand design is facilitated by the readily achieved substitution chemistry at the aqua sites of the \(\{M(CO)\}_3(H_2O)\}_3^{+1} \) \((M = \text{Tc, Re}) \) and \(\{\text{Re}(CO)\}_3 X (H_2O)\}_2 \) \((X = Cl, Br) \) species, and the coordination preferences of Tc(I) and Re(I) for nitrogen and oxygen donors. For example, we have found that \([\text{NEt}_4]_2[\text{Re}(CO)\}_3\text{Br}_3] \) reacts quantitatively with 2-aminomethylpyridine (amp) to give \([\text{Re}(CO)\}_3\text{Br}(\text{amp})] \) (22), shown in Figure 9. Similarly, the reaction of bis-(methyl-2-pyridyl)amine (bamp) with \([\text{NEt}_4]_2[\text{Re}(CO)\}_3\text{Br}_3] \) yields \([\text{Re}(CO)\}_3((C_3H_4NCH_2)_2\text{NH}]\)Br (23), shown in Figure 10.

This observation suggested the design of bifunctional chelators constructed from amino acids, so as to provide a donor set for effective coordination of Tc(I) and a linker group for attachment to peptide units. The significance of this ligand design is that the bifunctional chelators may be developed as reagents for direct incorporation into conventional solid phase peptide syntheses, thus exploiting the considerable advantages in purity, cost, scale and design afforded by solid phase peptide synthesis (SPPS).
preliminary study, the β-alanine derivative (NC₅H₄CH₂)₂NCH₂CH₂CO₂H (bis-2-pyridylmethyl-

![Figure 9. A view of the structure of [Re(CO)₃Br(amp)] (22).](image)

![Figure 10. A view of the structure of the cationic complex [Re(CO)₃(amp)]⁺ of [Re(CO)₃(amp)]Br (23).](image)

![Figure 11. The structure of [Tc(CO)₃(L₃a)].](image)

![Figure 12. The structure of [ReCl₃(L₃a-ethyllester)].](image)

aminoethylcarboxylic acid, L₃a) was prepared by the methods described elsewhere. The Tc(I) complex of L₃a [Tc(CO)₃(L₃a)] (24) was prepared in nearly quantitative yield (Figure 11), as well as an unusual material exhibiting the rhenium(III)-trichloride core [ReCl₃(L₃a-ethyllester)] (25) (Figure 12). The facile preparations of these model compounds suggested that a family of bifunctional chelators, derived from simple amino acids or bisamino acids could be developed, which through suitable manipulation of the ligand donor groups can provide neutral, cationic or anionic Tc(I) complexes. Neutral and anionic complexes are represented by [Tc(CO)₃{(NC₅H₄CH₂)₂NCH₂CH₂S}] (26) and [Tc(CO)₃{(O₂CCH₂)₂NCH₂C₃H₄N}]⁻ (27), respectively (Figures 13 and 14).
III. 3. Bifunctional chelates and peptide conjugates. Our preliminary studies focused on the preparation of model bifunctional chelates derived from β-amino acids and from ε-derivatization of lysine. The chelates MC1-3 were prepared by literature methods. While L1c was isolated as the FMOC derivative as illustrated in Scheme 1.
Since we had established from our HYNIC-peptide studies that the for-MLF exhibits strong binding to high affinity receptors on the white cell membrane, we chose this peptide as a model for our SAAC peptides and conjugates. The peptide was prepared by solid phase synthetic methods as outlined in Scheme 2.

Scheme 2. The solid phase synthesis and deprotection of the peptide for-MLFKG.

As a test of the versatility of the SAAC approach, two classes of ligand-peptide conjugate were now prepared: the "external chelate" in which the chelating moiety is attached to the \(-\text{NH}_2\) side arm of the peptide (analogous to the HYNIC incorporation) and the "internal chelate" in which the derivatized amino acid/donor group is incorporated into the peptide chain itself as a single amino acid with a chelating functional group. Representative solid phase syntheses of these two types of conjugate are illustrated in Schemes 3 and 4, respectively.
Scheme 3. Representative synthesis of an "external chelate" conjugate.

Scheme 4. Representative synthesis of an "internal chelate" conjugate.
III. 4. Preparation of Rhenium and Technetium Complexes: Synthetic Strategies and Stabilities of the Radioconjugates. The \(\{M(CO)_3\}^{+1} \) (\(M = \text{Tc, Re} \)) derivatives were prepared in nearly quantitative yield from the free conjugate or by incorporation of the preformed \([M(CO)_3(L1c)]\) complex into the solid phase peptide synthesis, as illustrated in Scheme 5. The advantage of this latter approach is the purity of the final product.

![Scheme 5](image)

Scheme 5. "External chelate" approach to the solid phase synthesis of the \(\{\text{Re(CO)}_3\}^{+1} \) complex of the conjugate.

The complexes were analyzed by elemental analysis, HPLC and nmr spectroscopy and demonstrated to be monophasic, pure compounds. HPLC showed a single peak, and the nmr spectrum, shown below is consistent with the structure and a single product.
The 99mTc analogues were prepared from the reaction of \{Tc(CO)$_3$(H$_2$O)$_3$\}$^{+1}$, obtained using the previously prepared kit (Mallinckrodt, Inc), with f-MLFK(L1c)G and other "external" and "internal chelates" in ethanol/DMSO. The Tc complexes were characterized by radiochromatographic and electrophoretic methods. The radio-HPLC traces gave a single peak associated with the product conjugate and minor peaks associated with ca. 5% of the total Tc content with considerably different retention times.

The stability of the radioconjugates toward oxidation, hydrolysis and transchelation was investigated in vitro by challenging the 99mTc conjugates with histidine, cysteine and model chelators of the L3 class. The radioconjugates were incubated at 37°C for 5 and 24 h in 400 molar excess of the challenging reagent.

Figure 15. The 1H nmr spectrum of [Re(CO)$_3$(f-MLFK(L1c)G)(TFA)].

Figure 17. C18 radio-HPLC trace of $[\text{Tc(CO)}_3\{f\text{-MLFK(L1c)G-OH}\}]^{+1}$, after 24 h incubation with cysteine.
Recovery of the 99mTc complex was of the order of 90-95% after 24 h incubation with the challenging reagents, demonstrating that these radioconjugates are robust chemical species which effectively coordinate and anchor the $\{\text{Tc(CO)}_3\}^{+1}$ subunit for imaging purposes. A representative radio-HPLC plot is shown in Figure 17.

IV. Publications.

2. Synthesis and characterization of rhenium(III) organohydrazide compounds. Crystal and Molecular Structures of $[\text{ReCl}(\text{PPh}_3)_2(\text{HNNC}_3\text{H}_4\text{N})(\text{HNNC}_3\text{H}_4\text{N})][\text{Cl}_2]$, $[\text{Re}\{2-(\text{Ph}_2\text{P})\text{C}_6\text{H}_4\text{S}\}2-(\text{Ph}_2\text{PO})\text{C}_6\text{H}_4\text{S}(\text{HNNC}_3\text{H}_4\text{N})(\text{HNNC}_3\text{H}_4\text{N})]$, and $[\text{Re}\{2-(\text{Ph}_2\text{P})\text{C}_6\text{H}_4\text{S}\}2(\text{HNNC}_3\text{H}_4\text{N})]$, Pérez-Lourido, P.; Romero, J.; García-Vázquez, J. A.; Sousa, A.; Maresca, K. P.; Zubieta, J. Inorg. Chem. 1999, 38, 1511.

6. Structural characterizations of a Re(IV) complex $[\text{ReCl}_4(\text{OPPh}_3)_2]$ and of an imino species $[\text{ReOCl}_2(\text{PPh}_3)(\eta^2-\text{OC}_6\text{H}_4-2-\text{CH}=\text{NH})]$, prepared from the reaction of $[\text{ReOCl}_3(\text{PPh}_3)_2]$ with salicylaldoxime, Chen, X.; Femia, F. J.; Babich, J. W.; Zubieta, J. Inorg. Chim. Acta 2000, 306, 112.

8. Investigations of the \(\{ \text{ReO} \}^{3+} \) core: a "2 + 2" complex from bidentate and potentially tridentate ligands: \([\text{ReO}(\eta^2-\text{HOc}_6\text{H}_4-2-\text{CH}_2\text{NC}_5\text{H}_4\text{S})(\eta^2-\text{SC}_3\text{H}_4\text{N})(\text{PPh}_3)]\), Chen, X.; Femia, F. J.; Babich, J. W.; Zubieta, J. *Inorg. Chim. Acta* 2000, 306, 38.

11. Schiff base chemistry of the \(\{ \text{ReO} \}^{3+} \) core: structural characterization of the unusual "3+2" complex \([\text{ReO}(\eta^3-\text{OC}_6\text{H}_4\text{CH} = \text{NC}_6\text{H}_4-2-\text{S})(\eta^2-\text{OC}_6\text{H}_4\text{C} = \text{NC}_6\text{H}_4-2-\text{S}])\), Chen, X.; Femia, F. J.; Babich, J. W.; Zubieta, J. *Inorg. Chim. Acta* 2000, 307, 146.

12. Synthesis and characterization of oxorhenium(V)-"3+1" mixed thiolate \([\text{SNS}]/[\text{S}]\) and \([\text{ONS}]/[\text{S}]\) complexes. Crystal and molecular structures of \([\text{ReO}((\eta^3-\text{SC}_2\text{C}_3\text{H}_3\text{NCH}_2\text{S})(\eta^1-\text{C}_6\text{H}_4\text{Br}-4-\text{S}))\), \([\text{ReO}((\eta^3-\text{SCH}_2\text{C}_3\text{H}_3\text{NCH}_2\text{O})(\eta^1-\text{C}_6\text{H}_4\text{X}-4-\text{S})) \text{ (X} = \text{Cl, OMe})\), \([\text{ReO}((\eta^3-\text{SCH}_2\text{C}_3\text{H}_3\text{NCH}_2\text{O})(\eta^1-\text{C}_6\text{H}_4\text{OCH}_3-4-\text{CH}_2\text{S}))\) and \([\text{ReO}((\eta^3-\text{SCH}_2\text{C}_3\text{H}_3\text{NCH}_2\text{S})(\eta^1-\text{C}_5\text{H}_4\text{NH}-2-\text{S}))\text{[Cl]}\), Chen, X.; Femia, F. J.; Babich, J. W.; Zubieta, J. *Inorg. Chim. Acta* 2000, 307, 88.

19. Spectroscopic and structural studies of complexes of the fac-[Re(N\textsubscript{3}N)(CO)\textsubscript{3}L+]+ type (N\textsubscript{3}N = 2-(2-)Pyridyl)benzothiazole; L = Cl, Br, CF\textsubscript{3}SO\textsubscript{3}, CH\textsubscript{3}CN), Chen, X.; Femia, F. J.; Babich, J. W., Zubieta, J. Inorg. Chim. Acta. 2001, 314, 91.

29. Dipyridinemethylamine tridentate chelates for labeling with the {Te(CO)₃}⁺ and {Re(CO)₃}⁺ cores, K. P. Maresca, S. R. Banerjee, N. Lazarova, K. M. Levadala, J. Zubieta, C. D. McCusker, A. J. Fischman, J. W. Babich, Technetium, Rhenium and
Bifunctional Single Amino Acid Chelates (SAAC) for Labeling of Biomolecules with the \(\text{Tc(CO)}_3\) and \(\text{Re(CO)}_3\) Cores. The Crystal and Molecular Structures of \([\text{ReBr(CO)}_3\text{(HHNCCH}_2\text{C}_3\text{H}_4\text{N})]\), \([\text{Re(CO)}_3\text{((C}_5\text{H}_4\text{NCH}_2\text{)}_2\text{NH})]\)Br, \([\text{Re(CO)}_3\text{((C}_9\text{H}_7\text{NCH}_2\text{)_2NCH}_2\text{CO}_2\text{H})}\]Br, \([\text{Re(CO)}_3\text{((X)(Y)NCH}_2\text{CO}_2\text{CH}_2\text{CH}_3})\]Br, \((X = Y = 2\text{-pyridylmethyl}; X = 2\text{-pyridylmethyl, } Y = 2\text{-}(1\text{-methylimidazolyl)methyl,})\)

