Gamma Ray Imaging for Environmental Remediation (GRIER)

EMSP Project 60141

Progress Report

March 1, 2000

PI W. N. Johnson Naval Research Laboratory
 Code 7651
 Washington DC 20375
 (202)-767-6817
 johnson@gamma.nrl.navy.mil

Co-I B. F. Phlips George Mason University, Fairfax, VA
 NRL Code 7651
 Washington DC 20375
 (202)-767-3552
 phlips@gamma.nrl.navy.mil

R. A. Kroeger Naval Research Laboratory
 Code 7651
 Washington DC 20375
 (202)-404-7878
 kroeger@gamma.nrl.navy.mil

J. D. Kurfess Naval Research Laboratory
 Code 7650
 Washington DC 20375
 (202)-767-3182
 kurfess@gamma.nrl.navy.mil

G. Phillips Naval Research Laboratory
 Code 6173
 Washington DC 20375
 (202)-767-5466
 gary.phillips@nrl.navy.mil

P. N. Luke Lawrence Berkeley National Laboratory,
 Mailstop 70A-3363
 1 Cyclotron Road
 Berkeley, CA 94720
 (510) 486- 4962
 pnluke@lbl.gov
Gamma Ray Imaging for Environmental Remediation (GRIER)
EMSP Project 60141
Progress Report - March 1, 2000

W. N. Johnson, R. A. Kroeger and J. D. Kurfess, G. Phillips
Naval Research Laboratory, Washington DC

B. F. Phillips, George Mason University, Fairfax, VA

P. N. Luke, Lawrence Berkeley National Laboratory, Berkeley, CA

The objective of the GRIER project is to apply germanium detector systems with both high spectral resolution and good imaging capabilities to the problems of environmental remediation. Over the last year, much progress has been made. We have
1. developed and built amorphous-contact germanium detectors of increasing sophistication,
2. built and tested an array of four position-sensitive germanium detectors,
3. demonstrated spectroscopy and imaging uses with 235U, and

Results from this research were presented at the EMSP’s first workshop in Chicago in 1998, at the

DETECTOR ARRAY

We acquired a 2×2 array of germanium strip detectors with conventional contact technology to build a prototype array. The individual detectors have an active volume of 50 mm × 50 mm × 10 mm and have 25 strips on each side. The full array in its cryostat is shown in Figure 2.

AMORPHOUS CONTACTS

The goal of the amorphous contact effort was to extend the single element (pixel) amorphous technology developed by Luke et al. (1994) to double-sided orthogonal strip detectors. Amorphous contact provides multiple advantages over the current lithium contact technology.

We have fabricated the first orthogonal strip detector with dimensions appropriate for field use. The detector has an active volume of 50 mm × 50 mm × 10 mm and has 25 × 25 strips (see Figure 1). It is currently undergoing tests. The resolution is ~12 keV FWHM, which is dominated by electronic noise. The noise was high because of the large capacitance and the non-optimal electronics used with the test cryostat.

The energy resolution is ~ 2 keV FWHM on individual strips as expected, proving

Figure 1. Full sized Ge detector with amorphous contacts. Each side has 25 strips with 2 mm pitch.

Figure 2. Array of 4 Ge detectors in cryostat. The 2 x 2 array has 2 mm position resolution.
the possibility of daisy-chaining.

We designed and manufactured a collimator to use in conjunction with the detector array. The collimator is a parallel hole collimator. It has a two-dimensional pattern of 400 micron square holes, with a pitch of 500 micron. Since the pitch is much smaller than the strip pitch on the detector, the collimator does not have to be aligned accurately with respect to the detector.

The image of a medical phantom with a circular pattern filled with Technetium-99 is shown in Figure 3. The protrusions on the top right and bottom left of the circle are real. They are created by notches in the phantom cavity that were also filled with the radioactive Technetium. The vertical strip of low flux in the image at ~45 mm is caused by a structural support in the cryostat that blocks two of the strips.

LABORATORY DEMONSTRATIONS

We have started testing the 2×2 germanium array in the laboratory and have demonstrated good spectroscopy and imaging with various isotopes. As an initial test of the system with isotopes of interest to the end users, we imaged a piece of uranium (U-235). The piece, shown in Figure 4, was roughly rectangular, with dimensions of ~2 by 3 cm.

The image shown in Figure 5 was obtained using the collimator and detectors described in section 0, and selecting a narrow energy window around the 185 keV line in the measured spectrum (Figure 6). The shape of the imaged object is clearly reconstructed, as expected. This energy windowing capability is essential for isolating a particular element, especially in a high background environment. A similar demonstration is also planned with a ~1 cm cube of plutonium (Pu-239). The plutonium measurements will be done with a thicker version of the collimator.

FUTURE PLANS

The remaining months of the program shall be devoted to improvements to the data acquisition and imaging systems in preparation for field test demonstrations.