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EXECUTIVE SUMMARY 
 
This report is primarily based on the PhD dissertation of Dongtao Wang1 and the MS 

thesis of Xiaorui Chen2.  Section I, based on Wang’s work, addresses algorithms and 

methods developed to perform equilibrium die temperature calculations without the need 

for simulation of multiple casting cycles as typically required.  Wang’s work also 

includes improvement to the qualitative reasoning algorithms used for die filling 

visualization in the CastView program plus preliminary work designed to extend the die 

filling visualization techniques used to slower fill processes such as permanent mold and 

gravity casting.  Section II is based on Chen’s work and addresses techniques to rapidly 

locate cooling lines for die temperature analysis and extract quantitative data useful for 

castability assessment from voxel data created by CastView. 

There are usually two concerns for die casting designers, thermal characteristics and fill 

pattern because they are closely related to castability, casting quality, and die life. The 

traditional way to obtain information about these phenomena is numerical simulation. 

However, due to the complexity of the equation system to be solved, the computational 

cost is high and numerical simulation is very time consuming particularly for a quasi-

equilibrium process using a permanent mold such as die casting. This makes numerical 

                                                 
1 Dongtao Wang,  “Equilibrium Temperature Analysis And Fill Pattern Reasoning For Die Casting 
Process,” PhD Dissertation, Industrial and Systems Engineering, The Ohio State University, 2004. 
 
2 Xiaorui Chen , “Graphical User Interface For Cooling Line Functions And Surface Rendering,” MS 
Thesis, Mechanical Engineering, The Ohio State University, 2003. 
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simulation an imperfect tool during the early stages of product development. It is very 

desirable for designers to have an efficient and reliable tool to quickly calculate the die 

and part temperature distributions and die fill pattern in order to support interactive 

design.  

In this study, a fast algorithm to compute the equilibrium temperature of the die and 

ejection temperature of the part was developed. The equilibrium temperature is defined as 

the time average temperature over a cycle after the process reaches the quasi steady state. 

The spatial distribution of the average temperature is useful for cycle and die 

cooling/heating design.  

The main challenge in computing the average temperature is determining the heat 

released from the part and accounting for the time varying conditions at the die/part 

interface and the die parting surfaces.  Several models to compute the heat released from 

part were tested and a surrogate model developed for this purpose. Average conditions 

were used to account for heat transfer calculation at the interfaces and special attention 

was paid to computational efficiency improvement. The algorithm also addresses the 

modeling of cooling/heat line, spray effects and techniques for die splitting at the parting 

line. The algorithm has been implemented in the software CastView.  

The equilibrium temperature methods described above would not be effective without 

techniques to place and describe the die cooling lines.  Cooling channel placement is 

often designed by guesswork or by past experience. It is very expensive and time 

consuming to modify the improperly placed cooling channels after the die has been built. 



 v

Chen’s work involved implementing a Graphical User Interface to design and modify the 

die cooling lines so that cooling could be incorporated in the termperature calculations. 

The system provides three methods to specify a cooling line:  

1. direct input of the coordinates of the cooling line nodes,  
2. orthogonal sketch and  
3. free sketch.  

The system also allows the user to modify an existing cooling line by changing its node 

coordinates, orthogonal editing, or graphical editing. 

From a castability point of view it is highly desirable to design the part with a reasonably 

uniform wall thickness that avoids abrupt changes in wall thickness. In order to give the 

designers an overall view of the wall thickness throughout the part, skeletons computed 

using the existing thin section analysis were used to provide local wall thickness data. 

From the skeletons, the thickness values are propogated to the part surface so that the 

wall thickness can be displayed on the part surface.  From the thickness associated with 

the surface, a histogram of the part wall thickness is constructed.  The histogram makes it 

easy to compute minimum and average wall thicknesses needed for fill time specification 

and gate design.  

The geometric reasoning algorithm used in CastView for fill pattern analysis was also 

redesigned. In this qualitative method, the flow behavior is calculated using the cavity 

geometric information. Many shortcomings in the old algorithm were fixed and 

improved. The new algorithm includes considerations which affect the flow behavior, 

such as flow resistance, more flow angle search and influence within neighborhood. 

Special attention is paid to computational efficiency improvement.  
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The fill pattern algorithm for die casting process, a high speed process, was adapted for 

slower fill processes including gravity casting and squeeze casting. The dominant term 

for flow behavior for different process is defined from dimensionless Navier-Stokes 

equations. Based on this analysis, the fill pattern algorithm for die casting is modified for 

slow fill processes.  

The analysis results using the algorithms presented were compared with those obtained 

from numerical simulations, historical data and experiments. The comparisons generally 

show good agreement. Given the typical computational time of a few minutes, the 

efficiency of the algorithms is remarkable.  

Currently, the application of equilibrium temperature analysis is die casting and fill 

pattern reasoning is die casting, gravity casting and squeeze casting. However, the 

algorithms developed in this study can be adapted and applied to other net shape 

processes.  

The specific contributions made by this research are: 

• Developed a mathematical algorithm to compute the equilibrium temperature of 

the die and the ejection temperature of part. The heat transfer concepts in steady 

state are introduced to quasi steady state to calculate the heat balance over a cycle. 

Special attention was paid to the calculation of heat released from the part and an 

approximate model developed that provides the part ejection temperature..  

• Composite heat transfer at interface, average temperature at different stages of the 

casting cycle, cooling line effects, spray effects and die splitting at parting surface 
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were addressed. Computational efficiency was considered by applying special 

methods to reduce the computation. 

• The algorithm was implemented in the CastView program providing a quick tool 

to evaluate the cycle and die cooling/heating design. Compared to hours or days 

of run time using numerical simulation to compute multiple cycles for a dynamic 

solution, the run time of CastView for equilibrium temperature is only a few 

minutes. 

• The old fill pattern algorithm used in CastView for die casting processes was 

redesigned. Flow speed, flow resistance, flow potential and influence within 

neighboring flows were included. The method to compute new vector when the 

flow hits an obstruction and the searching for available vectors were both 

improved.  

• The new algorithm for fill pattern was implemented in the program CastView, 

providing a quick and efficient tool to evaluate fill pattern in cavity. The run time 

for a typical case on CastView is only ~10 minutes while that on numerical 

simulation packages is hours. 

• The dominant terms on flow behavior for die casting process, gravity casting 

process and squeeze casting process from Navier-Stokes equations were 

determined and fill pattern algorithms for gravity casting and squeeze casting 

were obtained by modifying the algorithm used for the die casting process. 

The tool for equilibrium temperature can quickly compute the overall temperature 

distribution of die and ejection temperature of part. This helps the user evaluate the effect 
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of cooling and heating and verify the cycle design. Due to the efficiency of this tool, the 

user can explore numerous alternative designs, a task that is more difficult for numerical 

simulation packages.   

The limitation of the analysis for equilibrium temperature is that only steady state 

conditions are considered. This is to simplify the computation but it also introduces some 

problems. The heat transfer is computed based on the time average temperature. 

However, the actual heat transfer happens with a dynamic changing temperature. 

Information such as peak temperature is therefore not available.  

The tool for fill pattern analysis provides an alternative means other than numerical 

simulation. The advantage of geometric reasoning is the computational efficiency. It can 

produce a fill pattern prediction in a few minutes. This is particularly useful in early 

stages of design. Compared with the old fill pattern algorithm, the new algorithm 

improves the calculation and considers more factors. The results are more accurate but 

the computation time is only slightly increased.   Based on an analysis of the Navier-

Stokes equations and geometric reasoning, the fill pattern algorithms for gravity casting 

and squeeze casting can provide quick evaluation for fill patterns of these two processes.  

The limitation for fill pattern analysis is that this method is solely based on geometric 

reasoning thus there is limited physics behind the actual calculations. There is no strict 

consideration of mass conservation, momentum conservation and energy conservation. 

There is no calculation for heat transfer and solidification during flow analysis. This lack 
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has an inevitable effect on the ultimate accuracy but it does not limit the utility of the 

approach for tasks such as parting plane evaluation and gate and vent placement.  



 x
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1. BACKGROUND AND INTRODUCTION 

1.1 Die Casting Process 

Die casting (or high pressure die casting in Europe) is one of the most important net 

shape manufacturing processes. In this process, metal liquid is injected at high pressure 

and high speed into metal die cavity, with subsequent solidification into useful shapes. 

Compared with other metal shaping processes such as sand casting, rolling and forging, 

the die casting process has some advantages such as capability to produce complex metal 

parts with clear surface and thin walls and with high productivity. These advantages 

make die casting a more and more important process in the modern industries. The 

applications of die castings increased significantly in the recent two decades, especially 

in the automobile, aerospace, electronics and medical apparatus industries. It was 

predicted that such applications will be further expanded in the future (Gu, 1995).  

One requirement for metals to be die cast is they should have low melting point because 

the die and injection system are usually made by steel. The melting point of a metal to be 

die cast must be much lower than that of steel otherwise the die may be damaged or 

distorted. Thus, at present, the majority of die casting alloys are aluminum alloys, zinc 

alloys and magnesium alloys because of their low melting points. A die casting machine 

is used to produce die casting parts. There are two types of die casting machines, hot 

chamber machine and cold chamber machine depending on the metal delivery method. A 

hot chamber machine has a crucible, where the alloy is melted and is delivered to 
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injection system directly. In a cold chamber die casting machine, the melt is delivered 

from a separate furnace. Fig. 1.1 shows a typical cold chamber die casting machine.  

 

 

Section I-Figure 1.1: typical cold chamber die casting machine (www.quantum-
online.com, 2002) 

 

It is generally acknowledged that the development of die casting began from the early 

type-letter production with lead alloys. In 1822, William Church introduced a machine 

with an output of up to 20,000 letters per day, which is believed the first successful use of 

the die casting process (Barton, 1991). In 1839, the first patent of die casting using a 

piston die casting machine was issued (Kaye and Street, 1982). During the 19th century, 

the principles of die casting were being applied to the specialized field of printing, and 

the process was beginning to extend to the production of other articles. But only in the 
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20th century, especially in the World War II, die casting industry experienced its fast 

expansion period due to the demand from defense industry (Kaye and Street, 1982).  

An example may be able to show the rapid expansion of die casting industry. From 1991 

to 2001, the amount of magnesium used in passenger vehicles had an annual growth rate 

of 12%. In 2001, vehicles in production averaged 2.3 kg (5 lb) of magnesium and the 

most magnesium-intensive vehicles tipped the content scale at 25 kg (55 lb). "We expect 

magnesium to grow even faster in the next 10 years, and that's not even talking about 

powertrain (components)," said Bob Powell, Product Leader of the USCAR/U.S. 

Automotive Materials Partnership. (Kami Buchholz, 2001).  

In the recent years, great progressive development has been made in die casting alloys, 

die casting technology, die casting machines and control devices. Die casting industry is 

now in its "golden age" and will see its expansion in the future.  

1.2 Problem Statement 

During the die casting process, liquid or semi-solid metal is injected at high speed to fill a 

complex die cavity, and solidifies rapidly under high pressure. It is a complicated 

physical-chemical process. An incorrect process design often causes die casting defects, 

such as porosity and deformation, and also shortens the die life. To realize appropriate 

thermal balance and mold filling thus to ensure quality die casting products and prolong 

the die life, are two important issues for the die casting process design (Allchin, 1990).   
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1.2.1  Heat balance at equilibrium status 

The thermal characteristics of the die and casting are always fundamental considerations 

for designers. At the conceptual design stage, the typical questions about thermal 

characteristics include: 1) What does the spatial temperature distribution of the die and 

part look like? 2) Where are the hot spots? 3) What is the effect of cooling lines and 

spray? 4) What is the ejection temperature of the part when a certain cycle is applied? 

Numerical simulation of the transient temperature is the typical way to obtain the answer. 

The typical procedure for numerical simulation is: build CAD models for part and dies – 

input thermal property data and cycle parameters – run simulation – view analysis results. 

The analysis results include the dynamic temperature change of part and dies. Thus the 

user can read temperature at any location and at any time from the results.  

However, one disadvantage of transient solutions is that to obtain the thermal profile at 

quasi steady state literally hundreds of cycles are needed since the start-up is usually far 

away from the steady state. This is very time consuming and provides information that is 

beyond that needed for the cycle and die cooling design since cycle and cooling design 

only requires the overall temperature distribution and part ejection temperature at steady 

state. It does not require information about the dynamic temperature change in a cycle. In 

addition, at the conceptual design stage, there may be many alternate designs and 

exploration of the design space may be limited due to the time required to explore all 

alternatives. Thus it is very desirable to have a tool for thermal analysis that provides the 

needed information and runs very quickly supporting interactive redesign.  
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In quasi steady state, the temperature of any point at the die varies throughout the casting 

cycle but returns to the same value at the same relative time in each cycle. The 

equilibrium temperature is defined as the time average temperature over a cycle after the 

process reaches quasi steady state which is illustrated using Fig. 1.2 and Fig. 1.3. 

Considering any point in the die, its temperature change curve over time is shown in Fig. 

1.2. After a number of start-up cycles, cycle to cycle change is small and the process 

reaches the quasi steady state. The temperature change of this point over a single cycle 

thus can be illustrated using Fig. 1.3. The cycle can be further separated into a few stages, 

die close, injection and solidification, die open, ejection, spray and idle stage. The 

temperature keeps changing in every stage. However, we define the equilibrium 

temperature, which is hypothetical and does not actually exist. The equilibrium 

temperature is defined as time average temperature over a cycle for die and ejection 

temperature for part when the process reaches the quasi steady state.  

Note that this is time average and not a spatial average so the temperature still varies 

spatially. This equilibrium temperature is helpful for cycle and cooling design, especially 

at conceptual design stage. A part of the research is to develop and implement a quick 

approach to compute the equilibrium temperature of die and part.    
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Section I-Figure 1.2:Temperature change curve of a point in die over time. Each jag 
denotes a cycle. 
 

 

Section I-Figure 1.3: Temperature change of the same point over a cycle in 
equilibrium state. At the end of a cycle, temperature comes back to the level at the 
beginning of the cycle. 
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1.2.2  Fill pattern in die cavity 

Another common concern of designers is the fill pattern of metal liquid as it enters the 

cavity. Under high speed and high pressure, the liquid metal flows through the narrow 

and complex shaped die cavity. This is a very fast transient process which is usually 

atomized or turbulent flow. This filling process is one of the most important factors to 

determine the product quality. The metal flow, if not controlled precisely, can cause flow-

related defects, which range from gas porosity and knit lines to incomplete-fill. 

The most common flow-related defect might be gas porosity. During the cavity filling, 

ideally, the liquid metal pushes the cavity gas ahead to the vent as the flow front 

advances and the vent region is the last area to be filled. But if the flow is not controlled 

appropriately, the vent is sealed before the whole cavity is filled, thus some of the cavity 

gas is trapped in liquid metal. As the liquid metal solidifies and cools, the trapped gas in 

the product becomes the gas porosity. This defect usually results in poor product surface 

and low strength and is a common reason for rejection of die casting parts (Barone and 

Caulk, 2000).  

Since the filling plays an important role in the product quality, many researchers put their 

effort on fill pattern prediction. At the present time, the prevailing method is still 

numerical simulation, which is based on mass conservation, momentum conservation and 

energy conservation (Lu, et. al. 1999, Khayat, 1998 and Sulaiman, et. al. 2000). Due to 

the complexity of the equations, the equation solving is usually a time consuming task. 

Furthermore, the simulation systems require that the user has much experience and 
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understanding of fluid dynamics. These disadvantages limit the utility of numerical 

simulation and the number of “what-if” questions, especially early in design.  

An alternative method is qualitative reasoning for fill pattern prediction. This method is 

based on the geometric characteristics of the die cavity so it only requires the input of the 

part and gate geometry and does not require fluid dynamics background of the user. More 

important, there are no complex equations to be solved so the prediction can be obtained 

quickly. These reasons make it particularly suitable for the early stage design.  

The CastView research group at The Ohio State University developed a qualitative 

reasoning algorithm for fill pattern prediction (Miller, 1998, Rebello, 1997 and 

Elfakharany, 1999). According to its application, it helps the improvement of gating 

system design at the qualitative design stage. There is, however, need to improve the 

algorithm for better results and for wider application. Another part of this research was to 

develop a better model for fill pattern to replace the existing one.  

Problems for the old model include: 1) Velocity, pressure and resistance are not 

considered; 2) Calculation for multiple gate sometimes is wrong; 3) Flow pattern may be 

incorrect when there is an obstruction; 4) There is bias when filling a symmetric part. 

These problems, which will be discussed in detail in chapter 4 and chapter 5, contribute 

to an incorrect fill pattern prediction and should be addressed in the new model.  

In addition, the calculation for fill pattern in CastView is limited to the high pressure die 

casting process and is not applicable for other similar processes, such as gravity die 

casting and squeeze casting. Study on filling of these processes shows that the major 
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difference of them is the so-called dominating force (will be further discussed in Chapter 

7). Thus it is possible to modify the approach of geometric reasoning on die casting fill 

pattern for other processes. Another part of this research is to find a general algorithm (or 

minor modification from die casting algorithm) for these processes.   

Fig. 1.4 illustrates the structure of this research cooperating with other work. CastView is 

a comprehensive CAD/CAE project for die casting process while equilibrium 

temperature analysis and fill pattern computation are two sub-projects. Research in this 

dissertation includes equilibrium temperature analysis and redesign and improvement of 

old algorithm for fill.  
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Section I-Figure 1.4: Structure of research in this report, which is associated to 
CastView project and previous work by other group member. 

1.3 Literature Review 

1.3.1  Numerical simulation for die casting process 

In the traditional die casting design, engineers optimize the die casting process through a 

“try-revise” loop, which results in an expensive trial fee and a long trial cycle. To 

overcome these problems, the die casting researchers have introduced computer 

technology into die casting design. The traditional design is being replaced by the die 

casting CAD (computer aided design) and CAE (computer aided engineering). Currently, 

numerical simulation is a hot topic in this field. In numerical simulation, a mathematical 
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model based on physical-chemical phenomena in die casting process is set up. A 

collection of process data (including casting and gating system geometrical 

characteristics, material thermal properties and process parameters) is input into the 

computer then the simulation program is run and finally the result (prediction) is output 

(Chen, et. al. 1990, Rosbrook, et. al. 2000).   

In the early 1960s, shortly after the appearance of computers, some researchers began 

studies on numerical simulation of metal solidification (Wang, 1992). According to the 

one-dimensional heat equilibrium equation, Tuten and Kaiser developed a program for 

optimizing one-dimensional cooling design with programmable calculators TI-58 and 

HP-67 in 1979 (Tuten, et. al. 1979). Booth and Allsop made a program for computing 

heat equilibrium of dies and cooling system parameters with a PET personal computer in 

1981 (Booth and Allsop, 1981). Granchi computed the heat transfer between planar nodes 

thus obtained the two-dimensional temperature distribution of die sections by dividing 

the calculation field, which was based on energy conservation principle (Granchi and 

Vettori, 1983).  

Most of the research on thermal analysis for die casting is focused on transient solution. 

But in recent years, some research has been carried out on the equilibrium thermal 

analysis at steady state. The objective is also to increase the efficiency of the simulation 

without sacrificing too much accuracy. Barone and Caulk (1993) presented a method to 

calculate the periodic die temperature at steady state without solving for the start-up 

transient. Rosidale and Davey's (1998) addressed the thermal behavior of the injection 

system of hot chamber machines. Their thermal analysis model was based on boundary 
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element method and a series of papers were published. Ma (2000) computed the steady 

state thermal profile of part and die using purely geometric reasoning method.  

In Barone and Caulk’s method, some assumptions were made, such as the casting being 

comprised of piecewise elements with constant element thickness. These assumptions 

decreased the accuracy of the result. Rosidale and Davey calculated the whole injection 

system including nozzle and adaptor, which may increase the computation time. They 

applied boundary element method, where mesh generation may be a difficulty and only 

the boundary temperature was represented. Ma’s method did not consider the actual heat 

transfer so the accuracy was quite poor. These observations make it necessary to develop 

a quick and easy-to-use tool to obtain equilibrium temperature with reasonable accuracy.  

In the early research on die casting simulation, most of the efforts were placed on thermal 

profile analysis of the casting or die. But subsequently, some researchers carried out 

research on mold filling simulation due to the essential effect of the filling process on 

casting quality. There is not yet a satisfactory model describing the filling process 

accurately because of the complexity. Zhang (1996) developed a two-phase turbulence 

model, which successfully simulated some cases of filling process in die casting. Lu and 

Lee (1999) took the effects of the wall thickness and velocity profile between two 

bounding walls into account of governing equations. They simulated the metal flow in a 

cylindrical sleeve cavity using cylindrical coordinates system. Khayat (1998) proposed a 

three-dimensional boundary element method to confined free-surface flow for die 

casting. His approach is particularly applicable to flow driven by a plunger in cylindrical 

cavities. Lee and Sheu (2001) presented a new numerical method for incompressible 
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viscous free surface flow without smearing the free surface. Both liquid and air are 

considered as the physical domain in their model. Though many researchers made much 

progress on their studies, at present, filling process simulation is still a difficulty in die 

casting simulation.  

Some researchers have concentrated on other problems, such as thermal stress, distortion 

and peripheral equipment. In 1985, Kim and Ruhlanddt (1985) developed a model to 

compute thermal stress using the Finite Element Method.  Rosindale and Davey (1998) 

studied the thermal behavior of injection system of a hot chamber machine using 

boundary element method (BEM).  

At present, MagmaSoft and Procast are two successful commercial simulation software 

packages for die casting process. MagmaSoft is based on the Finite Difference Method 

and Procast is based on the Finite Element Method. ABAQUS is a popular general 

purpose simulation package. Though it is not particular for die casting, some researchers 

often apply it for die casting simulation due to its convenience. Flow-3D is another 

package to simulate general flow problem for engineering. Some die casting engineers 

also apply Flow-3D for fill pattern. (www.magmasoft.com, www.use-software.com, 

www.hks.com, www.flow3d.com, 2002).   

For thermal analysis, these and other packages compute transient temperature primarily 

due to the way the problem is set up. Thus, inevitably, start-up phase needs to be 

computed, which can be very time consuming.  
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1.3.2 Geometric reasoning 

Geometric reasoning is another important research topic in die casting CAD/CAE 

technology. Since the thermal profile, fill pattern and other process features are closely 

related to the geometry of casting and die, it is possible to obtain the feature information 

based on the pure geometric reasoning. Though the analysis accuracy of geometric 

reasoning is lower than that of numerical simulation, geometric reasoning is particularly 

important at the early design phase since at this stage, only the geometric characteristics 

are known and other process parameters, which are usually required by numerical 

simulation, are still unknown.  

The application of geometric analysis for casting process began in the 1940s. At that 

time, computers had not appeared yet. But the Chvoinov’s Rule had been widely known 

as (www.egr.msu.edu, 2002):  

t = C(V/A)2 

where t is the solidification time for a point in the casting section; C is a constant relating 

to casting material, mould material and mould temperature; V is the volume of casting 

section; and A is the surface area of the casting section. Therefore, based on the 

geometrical characteristic of a casting section, the solidification time for this section can 

be estimated. Since the requirement for casting design is “sequential solidification” to 

reduce porosity, the Chvoinov’s Rule can help to optimize casting design. A simpler term 

“modulus” is thus defined as: 

M = V/A 



 17

which means the ratio of volume over surface area in 3-D space or surface over perimeter 

in 2-D space. With the modulus of each casting section, the solidification sequence of the 

casting can be calculated easily. Though Chvoinov’s Rule was originally applied for sand 

casting, its application for die casting, which constructs the theoretic basis for 

computational geometric reasoning, is straightforward.  

Heine and Uicker (1984) were the pioneers to apply computational geometric reasoning 

on casting analysis. They published their application and extension of section modulus 

approach in 1984 and 1985. In the following years, other researchers also carried out the 

research on geometric reasoning approaches, including Neises, Ravi, Kotschi, Upadhyay 

(Ma, 2000).  

As described in previous section (see Fig. 1.4), there are three tasks for the research in 

this dissertation, 1) computation of equilibrium temperature of the die and ejection 

temperature of the part for die casting process; 2) fill pattern algorithm redesign for die 

casting process. The three projects are sub-projects of the CastView project. This report 

will discuss the development, implement and analysis results of these three projects. 

1.4 Summary 

1) Die casting is an important net shape manufacturing process with rapid growth 

rate of the application in recent years. 

2) Thermal characteristics and fill pattern are two common concerns for die casting 

engineers. The traditional way to obtain the solution is numerical simulation 

based on conservation equations. 
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3) Due to the complicated equation solving, numerical simulation is very time 

consuming and may be not suited for the conceptual design stage. 

4)  The research in this dissertation is to develop a mathematical model to calculate 

equilibrium temperature of die and ejection temperature of part. The purpose is to 

provide a quick tool to obtain the thermal profile of die/part. 

5) The algorithms need to be compatible with current CastView program. The fill 

pattern algorithm should be based on the old fill pattern algorithm which exists in 

the current CastView.  
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2. EQUILIBRIUM TEMPERATURE ANALYSIS FOR DIE 
AND PART  

2.1 Introduction  

As discussed in the previous chapter, prediction of equilibrium temperature of the die and 

ejection temperature of the casting is important for die cooling and cycle design. One part 

of this research is to develop a quick mathematical algorithm for equilibrium temperature 

computation. The objective is to provide a quick computer tool for steady state thermal 

analysis while providing reasonable accuracy. The intent is to help speed-up die and part 

design and help optimize cooling line placement and the casting cycle design. With the 

analysis results, a user can quickly know where the hot spot is and what the overall 

temperature looks like. This is very helpful at the conceptual design stage. A typical 

numerical simulation can also do this but it is too time consuming and the information 

provided is more than needed. Thus the traditional numerical simulation is not suited for 

this stage. In addition, the equilibrium results can provide a start-up profile for transient 

temperature simulation with greatly reducing total simulation time. For example, 

simulation software may have to finish 100 cycles from initial state to reach quasi steady 

state for analysis of thermal stress or distortion, which may take days of computation. 

However, if the simulation starts from equilibrium temperature profile, it may need only 

10 cycles to reaches steady state, which takes much less time. This chapter discusses the 

algorithm to compute the equilibrium temperature in CastView.  
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2.2 Heat Balance for Equilibrium Process 

The numerical method selected is based on several considerations: 1) Compatibility with 

available software; 2) Speed; 3) Computer memory requirements. This study is a 

component of the existing CastView project thus compatibility with the CastView 

software is very important. Furthermore, pre-processor and post-processor functions of 

CastView can be used directly for thermal analysis. The CastView software uses the 

voxel model (a collection of uniform size cubes) to represent 3D geometric solids of die, 

part or other components. The voxel array is very similar to a finite difference grid. 

Therefore, finite difference method is employed as the numerical method.   

If we consider a voxel in a true equilibrium process, the heat flows into this voxels plus 

the heat that it generates equals to the heat it flows out due to the energy balance. The die 

casting process is a quasi steady state and not in a true equilibrium. However, if we 

consider the whole cycle period, the heat balance still holds. The heat flows in plus heat 

generated should equal to heat flows out for a voxel when the process reaches quasi 

steady state. Since we define the equilibrium temperature as time average temperature 

over the cycle, we can establish the energy balance equations by applying the equilibrium 

temperature.  

Considering the heat transfer in an interior voxel (Fig. 2.1) in the equilibrium state, the 

well-known energy balance equation is: 
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Q1+Q2+…+Q6+Q=0 (2-1a)

 

 

Section I-Figure 2.1: Heat balance for a voxel. Q1 ~ Q6 are heat from the 6 
neighboring voxels and Q is heat released from current voxel. 
 

Q1 ~ Q6 are heat transferred from the 6 neighboring voxels and Q is heat released from 

the voxel itself. In other words, in equilibrium the heat flowing into a voxel plus the heat 

released must be balanced by the total heat flowing out of the voxel.  

Considering the heat flow from face 1, we can express the heat amount in the whole cycle 

using time average temperature: 
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Where T and T1 are the transient temperatures of the target voxel and the neighboring 

voxel. R1 is thermal resistance of the target voxel and the neighboring voxel. 1 and TT  

are time average temperatures of target voxel and neighboring voxel. Equation (2-1b) is 
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for an interior voxel only where R1 does not change over the cycle. For the voxels at 

interface where heat transfer condition changes during the cycle, the heat flow needs 

special treatment which will be discussed in later section.  

Equation (2-1b) is for heat flowing from a face. If we consider the 6 faces of the target 

voxel, we will have the sum that heat flows in. Thus Eq. (2-1a) can be written as (after 

rearrangement):   
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Where R1 ~ R6 are the thermal resistance between the target voxel and neighboring 

voxels and 
.
q is the interior heat rate. The thermal resistance to heat flow is defined by 

analogy to Ohm’s law to current flow. To illustrate the definition of thermal resistance, 

let’s consider a 1D example.  

 

 

Section I-Figure 2.2: Definition of thermal resistance 
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In the example, the surface temperatures of the two sides of a wall are T1 and T2 with 

wall thickness H and conductivity k. The heat flux is then: 

 

)( 12 TT
H
k

dx
dTkq −−=−=  

(2-3)

 

If the surface area is A, in the thermal resistance form, we have, 

 

R
TTqA 12 −−=  

(2-4)

 

The rate of heat flow is analogous to the current, and the temperature difference is 

analogous to the potential (voltage) difference. Thus the thermal resistance R can be 

defined as, 

 

Ak
HR =  

(2-5)

 

It can be seen that to increase the thermal resistance, we can either increase the thickness 

of material or decrease the thermal conductivity. Using the similar analogy, we can 

develop heat resistance for a composite wall and complex heat transfer. 
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Section I-Figure 2.3: A composite wall (without heat transfer coefficient between 
two materials). 

 

 

Section I-Figure 2.4: Thermal resistance with heat transfer coefficient at one side. 
 

Suppose we have a composite wall with two different materials A and B shown in Fig. 

2.3, the thermal resistance between the two surfaces (at T1 and T2) is   

 

BA Ak
h

Ak
h

R 21 +=  
(2-6)

 

If there is convection at one side as shown in Fig. 2.4 with heat transfer coefficient h, the 

thermal resistance can be written as: 
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AhAk
HR 1

+=  
(2-7)

 

This shows that the heat transfer coefficient h at the surface contributes a resistance to 

heat flow given by 1/Ah. Therefore, if there is heat transfer coefficient h between two 

materials in a composite wall, the thermal resistance should be  
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(2-8)

 

Back to Eq. (2-2), after rearranging, the equation can be rewritten as 
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This is actually in the form (note that this is for interior voxels only and exterior voxels 

will be discussed later in this chapter):  

 

STaTaTaTaTaTaTa HFTBRLC =++++++ 526341  (2-10) 

 

where T  is the equilibrium temperature of the voxel itself and 1T  ~ 6T  are temperatures 

of the neighboring voxels. S is a term collecting all factors that do not depend on 

temperature and aC ~ aH are coefficients that depend on interface and material properties. 
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For each voxel, there is an equation of the form of Eq. (2-10) and the total equations for 

all voxels form a large system of equations (as shown in Fig. 2.5). The values of m and n 

depend on the dimensions of computational domain.  

 

Section I-Figure 2.5: Matrix form for equation system. T1 ~ Tn are unknowns. The 
values of m and n depend on the dimensions of computational domain. 
 

The relation of m and n with the computation domain can be illustrated using Fig. 2.6. In 

the figure, the three dimensions of the domain are IMax, JMax and KMax. This is a 3D 

array but we will use a 1D array to represent the voxels. We choose the marching 

direction on the three directions as I -> J -> K for voxel index. This means we start from 

(0, 0, 0) and walk to right until we reach (IMax-1, 0, 0). We then go to next row, starting 

from (0, 1, 0) and walk to (IMax-1, 1, 0). This procedure continues until we finish the 
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first layer where K = 0. Then we start the second layer K = 1. This marching scheme 

builds a relation between 1D array and 3D array. Considering a target voxel with 1D 

index p and the neighboring 6 voxels, the indices of left, right, front, back, bottom and 

top voxels are p - 1, p + 1, p – IMax, p + IMax, p – IMax*JMax and p + IMax*JMax. 

Thus the values of m and n in Fig. 2.5 are IMax -1 and IMax*JMax – IMax -1.  

 

Section I-Figure 2.6: Computational domain and neighboring voxels around the 
target voxel. The labels of l, r, t, b, f, h represent the left, right, top, bottom, front 
and back voxels. 
 

Many existing solvers can solve the equation system (Fig. 2.5) in various ways such as 

Strongly Implicit Procedure (SIP), Alternating Direction Implicit (ADI) and CGSTAB 

(Ferziger and Peric, 1999).  However, Successive Over Relaxation (SOR) is particularly 

suitable considering memory requirements. SOR has the simple iterative form: 

 



 28

)1(
,,

)1(
,1,

)(
,1,

)1(
1,,

)(
1,,

)1(
,,1

)(
,,1,,)(

,,

)1(

)]([

−

−
+−

−
+−

−
+−

−+

+++++−
=

t
kji

C

t
kji

Ht
kji

Ft
kji

Tt
kji

Bt
kji

Rt
kji

L
kjit

kji

T
a

TaTaTaTaTaTaS
T

ω

ω
 (2-11) 

 

where ω  is the over relaxation factor which must be greater than 1 for acceleration and t 

is the iteration counter and i, j, k are voxel position indices.  The calculation continues for 

each voxel until it converges. SOR is a fast solver (though it is not the fastest one) and 

requires the minimum memory. Compared to other solvers, SOR only needs to store and 

use the non-zero coefficients (aC ~ aH), which increases the computation capability 

significantly.  

2.3 Models for Heat Source Calculation 

The heat source of equilibrium is the heat released from part during the solidification or 

possible heating and cooling lines. The heat released from a part voxel is not independent 

of die, cooling, spray and other factors. Therefore, one difficulty is how to model the heat 

released from an individual part voxel. Several attempts were made to approximate the 

heat amount released, including a heat flux model, a skeleton model, a linear average 

model, an asymptotic model and a surrogate model. The combination of asymptotic 

model and surrogate model was finally selected for the heat source calculation. 

In the heat flux model, the part is first divided into regions according to the wall 

thickness. In CastView, there is a computation module named thick section analysis to 

calculate the wall thickness of the part. As shown in Fig. 2.7, the part is divided into three 

regions, with wall thickness of 2, 3 and 4. It is assumed that at each region surface, the 
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heat flux from part to die is constant. The procedure to calculate heat flux for each region 

is as follows. 1) A global ejection temperature is assumed, which means all part voxels 

are ejected at the same temperature. 2) Calculate voxel number and surface area for each 

region. 3) Based on these values, calculate the heat released from each region and the 

average heat flux from region surface.  

However, there are two disadvantages for this method: 1) The part temperature cannot be 

calculated; 2) A global ejection temperature is assumed. 3) The heat flux is also related to 

die geometry even the part thickness is the same. For example, considering the left side 

and right side of region with wall thickness of 4, as shown in Fig. 2.7, the heat flux from 

left side should be larger than that from right side because the die temperature at left side 

is lower than that at right side. Therefore, the assumption is not correct even for a simple 

case like that in Fig. 2.7.  
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Section I-Figure 2.7: Illustration of heat flux model. The part is divided into three 
regions according to part wall thickness. 
 

In the skeleton model, it is assumed that only the skeleton voxel of the part can release 

heat. Like heat flux model, the part is also divided into regions according to the wall 

thickness. The skeleton line (also known as the central voxels of a region) is found for 

each region using a method calling "onion peeling", which actually peels the voxel model 

from surface to the center.  In CastView, there is a computation module named thin 

section analysis to perform this calculation. As shown in Fig. 2.8, the skeleton line is 

found and marked with the wall thickness. The heat released from each skeleton voxel 

thus can be calculated. The procedure for this is as follows. 1) Divide the part into 

regions according to wall thickness. 2) Calculate the skeleton lines. 3) Calculate voxel 

number and the number of skeleton voxels for each region. 4) Assume a global ejection 
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temperature and calculate total heat released from each region. 5) Assign the heat to 

skeleton voxel of each region. This method can overcome the disadvantages of unbalance 

heat flux in heat flux model. However, it still makes an incorrect assumption for a global 

ejection temperature. Therefore, the result applying skeleton model is not good. . 

 

 

Section I-Figure 2.8: Illustration of skeleton model. The part is divided into three 
regions according part wall thickness and the skeleton for each region is computed. 
 

The shortcoming of these two models led to seeking methods linking the heat source and 

part average temperature. During the calculation, the approximate equilibrium 

temperature (time average temperature) of each part voxel is known. This equilibrium 

temperature should have a relation to part ejection temperature, which determines the 

heat released by each part voxel. The linear average model is a simple attempt for this 
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idea. In this model, it is assumed that the equilibrium temperature of a part voxel is 

simply the mid point of the injection temperature and ejection temperature, i.e. 

 

2
)( ejinj

ave

TT
T

+
=  

(2-12)

 

The mid point actually comes from the average assuming temperature in a linear 

formation of time. Thus the heat released by each part voxel can be easily calculated.  

The linear average model is a good attempt but obviously the relation between 

equilibrium temperature and ejection temperature is not that simple. This led to the 

asymptotic model. 

2.4  Asymptotic Model 

The basic idea of this model is to mimic the general form of the typical cooling curve for 

a point in the casting and assume a lower bound for the ejection temperature as shown in 

Fig. 2.9. The minimum temperature of lower bound must be equal to the temperature of 

the environment or higher. If the cycle is very long, the ejection temperature will 

approach the environment temperature but for a practical cycle time, a higher temperature 

is reasonable.  
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Section I-Figure 2.9: Temperature change of a part voxel in a cycle. The part may 
be ejected when its temperature is at any point on the curve. 

 
For a part voxel, if the ejection temperature is below solidus temperature, the released 

heat during solidification and cooling can be represented by Eq. (2-13), which says that 

the heat released by a voxel over the cycle is composed of the super heat, the latent heat, 

and the heat released due to cooling after solidification. 
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cycle

TTc
t

VQ  (2-13) 

 

Where, 

Q' – heat rate, (Watts) ρ -- density, (kg/m^3) 

tcycle -- cycle time, (sec) V -- volume of the part voxel, (m^3) 

cp -- specific heat, (J/kg/oC) Tinj -- injection temperature, (oC) 
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Tliq -- liquidus temperature, (oC) Tsol -- solidus temperature, (oC) 

Tej -- ejection temperature, (oC) λ -- latent heat, (J/kg) 

 

For the ejection temperature of a part voxel, there are three possibilities: ejT  > liqT , 

solejliq TTT >>  and solej TT < . The relationship between ejT  and T can be set up for each 
case. 
 

1) ejT  > liqT  

The temperature is assumed to change in a linear way in this region. Hence the 

relationship is:  

 

2
ejinj TT

T
+

=  (2-14) 

injej TTT −= *2  (2-15) 

 

2) solejliq TTT >>  

It is assumed that the heat rate is constant in this period, i.e., CdtdQ =/ . A little calculus 

and algebra leads to: 
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)(*** liqinjpsh TTcvQ −= ρ  (2-17) 
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(2-18) 

Where Q is total heat released by this voxel and Qsh represents its super heat.  

 

3) solej TT <  

In this period, it is assumed that rate of temperature change is proportional to its 

difference with the minimum temperature, i.e. Eq. (2-19) describes the time relationship 

between average temperature and minimum temperature and the proportionality constant 

is unknown.  

 

))((*)(
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−= α  with initial condition sollhsh TttT =+ )(  (2-19) 

 

From this assumption, the ejection temperature is found as a function of other parameters 

by solving the equation resulting in Eq. (2-19). 
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)()( *)1(* TeTeT lhshclhshc ttt

sol
ttt

ej
−−−−−− −+= αα  

(2-20) 

where, 

α -- time constant  tsh -- time to release super heat 

tc -- cooling time (from injection to ejection) Tsol – Solidus temperature 

tlh -- time to release latent heat  
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Starting from this equation and, after considerable algebra, the relationship of average 

temperature and heat released from the part voxel can be reduced to Eq. (2-21). The key 

property of Eq. (2-21) is that it relates heat released, Q, to the average temperature, 

exactly the inverse of the relationship needed for the calculation. The heat released by a 

part voxel can be computed based on the equilibrium temperature of this part voxel. The 

calculated relation between heat released and ejection temperature using asymptotic 

model can be illustrated using Fig. 2.20.  
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shT -- average temperature for release of superheat phase 

lhT -- average temperature for release of latent phase 

Qmax -- maximum heat that can be released (if ejection temperature is the minimum 

temperature) 

2.5  Surrogate Model for Ejection Temperature 

A drawback of the asymptotic model discussed previously is that a minimum temperature 

is assumed. This temperature is the lower bound of the ejection temperature. 

Theoretically, this minimum temperature should be the environment temperature since 

the ejection temperature will never be lower than the environment temperature. However, 
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it is found from computational experience that the environment temperature does not give 

a good result for the equilibrium temperature. The typical values for minimum 

temperatures in calculation of equilibrium temperature are 150 oC for an aluminum part 

and 130 oC for a zinc part. Occasionally, the minimum temperature needs to be adjusted 

after the first try.   

In addition, the “optimum” minimum temperature varies with part geometry and heat 

transfer conditions. An example is shown in Fig. 2.10, which comes from numerical 

simulation. There are four temperature change curves over a cycle, corresponding to 4 

different points on a part. It can be seen that at the ejection, the ejection temperatures of 4 

points are very different. This indicates that the asymptotic minimum temperature should 

be locally defined because the asymptote is a pseudo asymptote established when the 

initial temperature difference is reduced.  This “asymptote” will slowly decrease with 

time as the die cools. 

A surrogate model has been developed to overcome this problem, i.e. to remove the 

minimum temperature assumption for the calculation. 
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Section I-Figure 2.10: Temperature change curves over a cycle for 4 different points 
at the part, which are from Abaqus numerical simulation. 

 

The rate of change of heat content equation for any voxel other than a part voxel during 

the period of time latent heat is being released can be described in general terms as 

follows: 
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(2-22) 

 

The terms lmnψ  in (2-22) are functions of heat transfer coefficients and conductivities 

depending on the specific interface involved. The subscripts index the target voxel 

relative to its neighbors in the x, y and z directions.  This equation describes the relation 
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of heat change and temperature difference as a function of the temperature of the 

neighboring voxels. After rearrangement, the equation (2-22) becomes 
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Using simpler notation, we can rewrite equation (2-23) as: 
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Then we have a simple first order matrix equation (symbol 1  denotes a column vector of 

1’s): 
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The differential equation for the part is a little more complex because of the latent heat 

release.  We will use the concept of enthalpy, where the enthalpy content per unit volume 

of material is defined as ( lf  is the fraction liquid):  

0
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T

p lh C T dT Lf T= +∫  
(2-26) 

 

If the specific heat is assumed constant with temperature, the above equation can be 

written as: 
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Thus: 
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(2-28) 

 

 

Assuming that the fraction liquid is a linear function of the temperature difference from 

liquidus temperature: 
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Using the chain rule and we have: 
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(2-30) 

Where 
1  if 

( )
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sol liqT T T
Tξ

< <
=  (2-31) 

 

Combining (2-25) and (2-31), we have the differential equation that defines a part voxel 

temperature in the form:  
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(2-33) 

 

Thus, if the ejection temperature is above liquidus, we can write  
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If it is between liquidus and solidus 
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(2-35) 

 

If it is below solidus 
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(2-36) 

 

Using fraction solid, equation (2-34) ~ (2-36) can be combined as: 
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Where sf  is fraction solid. This implies that the change in temperature is proportional to 

the average difference in termperature between the voxel that is the target of the analysis 

and the surrounding voxels plus a term proportional to the latent heat (heat source).  

Equation 2-38 is exact (subject to the assumptions) in the sense that it describes the 

average temperature as function of the injection and ejection temperatures.  If the ejection 

temperature were known for each voxel, the system of equations built using 2-38 for each 

voxel would produce the average temperature.  The problem is we don’t know the 

ejection temperature.  We get around this problem using a surrogate equation. 

In Eq. (2-19), Tmin is an unknown constant and only is applied in the cooling phase. This 

is modified slightly for the entire interval as an estimator or surrogate for the ejection 

temperature.  

 

( ) 0
( ) ( ( )) ( ) ;  ( )c inj

dz t z t z t T z t T
dt

α γ= − − =  
(2-39) 

with Tc an unknown constant. The notation has been changed from the asymptotic model 

to minimize confusion, where Tc is minimum temperature and z is surrogate of 

temperature. Equation (2-39) is an approximation of (2-32) but it does not depend on 

neighboring voxels. We are using a single constant Tc and an unknown constant γ to 

approximate the relationship with the neighbors. 

Requiring the average and ejection temperatures of the actual equation and the surrogate 

to be the same, ie Tz = and ejecteject Tz = , equation (2-38a) can be written as: 
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Comparing Eq. (2-39) and Eq. (2-32) both describing temperature change, we know that 

the right hand sides should be equal, which means ))(()1( cn
T TtzTT −=−− γλ . 

Therefore, Eq. (2-38b) can be written as: 
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For convenience we will define the function g from Eq. (2-40) with the following 

notation 
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Comparing equation (2-40) and (2-38), if we assume the surrogate is a good 

approximation, we can assume the left hand sides of both equations are approximately the 

same. With the assumption z T≈ , we have: 
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From this equation, we define a function h as 
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(2-44) 

 

Similar to asymptotic model, there are three cases for the h and g functions for ejection 

temperature corresponding to super heat phase, latent heat phase and cooling phase, 

which are summarized in Table 1.1 and Table 1.2.  

 

Section I-Table 2-1: Ejection Temperature Relationships 

Condition Ejection Temperature (source terms), ( , , )c ejectg T z T  
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Section I-Table 2-2: Surrogate Constant Relationships 

Condition Ejection Temperature (source terms), ( , , )c ejectg T z T  

eject liqz T≥  ( )( )
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The curves shown in Fig. 2.10 were used to test the surrogate equation as an 

approximation. This test is not a computational test but a test of the approximation and 

demonstrates that the surrogate, in principle, is a good approximation.  It does not 

demonstrate that a good result can be computed in our equilibrium temperature analysis.  

The test actually substitutes the numerical simulation result back into the surrogate model 

and computes the temperature response with time. The procedure used is as follows: 

1) A table of z  values was computed as a function of ejectz  and cT  using the g 

function.  
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2) Given the ejection temperature and the average temperature from numerical 

simulation result, a value for cT  can be determined. 

3) Once values for cT  and ejectz  are available, γ  can be computed since ejectt  is 

known.  

4) The time response can then be computed from the solutions of the differential 

equation. 

The results are shown in Fig. 2.11. It can be seen that the two sets of curves match very 

well. This means that if we know the ejection temperature, average temperature and 

ejection time, we can compute the temperature change curve using surrogate model. The 

test shows that the surrogate model is a good approximation. However, since in our 

computation for equilibrium temperature, we do not have ejection temperature and 

average temperature (they are to be solved), the surrogate model does not guaranty good 

results.  
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Section I-Figure 2.11: Test of surrogate equation using data generated by numerical 
simulation. This is to demonstrate in principle the surrogate model is a good 
approximation 

2.6 Implementation of Surrogate Model 

There are two functions ( , , , )nc ejecth T z T T = 0 and ( , , )c ejectg T z T  = 0 in the surrogate 

model, which are listed in table 2-1 and 2-2. During the calculation, the estimated 

average temperature T  for each voxel (element) is available. The h and g functions then 

need to be solved to obtain Tc and zeject for each voxel, corresponding to minimum 

temperature and ejection temperature. The heat released then can be calculated with 

ejection temperature, which can be used to update the average temperature T . Such a 
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procedure is continued until the computation converges. To obtain the initial average 

temperature T , the asymptotic model is applied for the first few steps, say, 20 steps with 

an assumed minimum temperature. This assumed temperature is not important because it 

is for the initial guess for surrogate model and will be adjusted by surrogate model in 

later calculations. 

The procedure to solve h and g functions for each voxel at each step is to solve two non-

linear equations simultaneously, which is much more difficult than solving linear 

equations. The first attempt is Newton-Raphson method which comes from Taylor 

expansion. The Taylor series at first order for h function is: 
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Similar equation can be obtained for g function. Both equations can be combined in a 

matrix form: 
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The equations of
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In this method, the two unknown cT∆ and ejectz∆ are solved then cT and ejectz can be 

updated. However, one problem with this method is that the convergence is slow. Since 

for each part voxel at each iteration, the h and g functions need to be solved, the overall 

convergence is much slower than that in asymptotic model.  

Another way is the direct search method. Suppose the h and g relation are illustrated 

using Fig 2-12. For the g curve, g = 0 only happens on the curve and the upper side is for 

g > 0 and lower side is for g < 0. The situation is similar for h curve. The intersection 

point D of the g curve and the h curve is the solution. At one iteration step, our starting 

point is O and the target is D. The search is started with a small step in each of 8 
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directions at O, with 45o angle between each two neighboring directions. By taking the 

minimum value of |h| + |g| for each step, the next point can be found since at point D, the 

value of |h| + |g| is zero. The search is repeated at the new point and this procedure is 

continued until the |h| + |g| of the new point is close enough to zero. 

 

 

Section I-Figure 2.12: Direct search to solve h and g functions. The starting point is 
at O and the target is D. Marching is made from O to D by choosing a direction at 
each step. 
 

The above method uses a fixed step size. By experience, it was found that the number of 

steps for searching varies with the convergence of global computation. For example, if 

we choose a fixed step size of 1 oC, early in the global computation, it usually takes ~6 

steps of marching to reach D. As the computation advances, the number of steps to reach 

D decreases to 3 or 4. When the computation is almost done, there is little marching from 

O. This observation indicates that at the beginning, the starting point O is far away from 

D but O is closer and closer to D during the computation though D is not a fixed point.  
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Based on this observation, the direct approach can be further improved using fewer 

search directions and changing step size. The procedure is as follows: 

1) Choose a relatively large step size at the beginning, say, 2 oC; 

2) Change the step size to 1 oC, 0.5 oC and 0.2 oC when 20%, 50% and 80% of 

computation is done (this can be measured approximately through the 

convergence); 

3) Not searching the 8 directions every time except the first time. In other words, the 

first step is taken by searching the 8 directions. The sequential search is only 

within last direction and the two neighboring directions. For example, in the first 

time, we search 8 directions and take the 5th direction. Next time, we only search 

the 4th, 5th and 6th directions and take the best one.   

The direct search method is much faster than Newton-Raphson method and the total run 

time is only 10 ~ 20% more than that of the pure asymptotic model.  

2.7 Composite Heat Transfer at Interface 

A typical die casting cycle consists of 6 steps: die close, injection and solidification, die 

open, ejection, spray and idle. An interface voxel, i.e., a voxel on the parting plane or 

cavity surface, has different neighbors at different steps during a cycle (Fig. 2.13). The 

middle die voxel in the upper row of the figure, located on the parting plane surface, has 

a casting voxel neighbor when the die is closed and has an air voxel neighbor when the 

die is open. Similar differences occur for any voxel on the parting surface or cavity 
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surface. Thus, the heat balance equation needs to be modified for all interface voxels to 

account for the differences in neighbors during the cycle.   

 

Section I-Figure 2.13: A voxel at interface has different neighbors at different step 
during a cycle, (D depicts die, C casting) 
 

Considering the composite heat over the cycle from both types of neighbors, it can be 

seen that the total heat is composed of the heat across the interface when the die is closed 

plus when open, see Eq. (2-51).  It was approximated with two different heat transfer 

coefficients and different neighbor average temperatures and the appropriate average 

temperatures Eq. (2-52).  Dividing Eq. (2-52) by the cycle time gives the heat rate Eq. (2-

53) and rearranging terms gives the expression in terms of the average voxel temperature, 

average part voxel temperature and air temperature Eq. (2-54).  Each term is weighted by 

the fraction of the cycle that it applies. Eq. (2-54) is used in the heat balance equation Eq. 

(2-10) for all interface voxels. Essentially, a time weight factor is applied for interface 

voxels instead of the simpler original Eq. (2-10) that is based on fixed conditions between 

neighbors. 
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In these equations:  

oc hh , -- heat transfer coefficients between die and casting, die and air 

closeopencycle ttt ,, -- cycle time, die-open time and die-close time 

ifaceiface QQ ', -- heat and heat rate on interface 

Not that the step between equation (2-51) and (2-52) is not rigorously correct because 

, ,i j kT  is determined by the total cycle, whereas the average value for each of the two 

integrals could be different.  The approximation is not unreasonable however. 

To obtain the equation in Eq. (2-10) form, let us consider a die voxel with 6 faces which 

is located at interface. Let us further suppose that face 1 is the interface and the time 

periods to contact air and part voxel are opent and closedt . The heat balance equation can be 

written as: 
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Thus the equation can be written in the form of Eq. (2-10). If there are more faces on 

interface (contacting air or part), the heat balance equation needs to change accordingly.   

2.8 Average Temperature at Different Stages 

In Eq. (2-56), temperature T is the average temperature of an interface voxel over the 

whole cycle. This temperature is used to calculate the heat transfer with other interface 

voxels in different cycle stages. However, careful inspection found there was error by 

using this global time average temperature.  
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Section I-Figure 2.14: Calculating average temperature of an interface part voxel at 
different cycle stage. There are two stages, contacting die surface and contacting air. 
 
Suppose there is a part voxel at interface (Fig. 2.14), during time period 0 ~ opent , the heat 

transfer happens between part voxel and die voxel. During time period opent ~ ejt , the heat 

transfer happens between part voxel and air voxel. In Eq. (2-56), the global equilibrium 

temperature T  is used to calculate the heat transfer in both periods. This is not correct 

because neither the time average temperature closedpartT _ during the period 0 ~ opent is the 

global temperature T  nor the time average temperature openpartT _ during the period opent ~ 

ejt  isT . In fact, it can be seen from Fig. 2.14 that the three average temperatures are 

different.  
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An observation from Fig. 2.14 is that openpartT _  is very close to ejT . Based on this, an 

approximation can be done to reduce the error. Let us assume that ejopenpart TT =_ , then: 
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Since T  is known during computation, ejT can be calculated by asymptotic-surrogate 

model and closedpartT _ can be calculated. By this improvement, the error mentioned earlier 

can be corrected partially.  

2.9 Cooling Line and Spray 

Cooling lines and spray are two important ways for changing heat removal conditions 

and improving the design. Two issues are considered: 1) How to define the geometry; 

and 2) How to model their effects for heat transfer.  

In this method, the opening direction and parting plane are defined before cooling line 

definition since a cooling line cannot go through parting plane or run into the part. One or 

more sketching planes are then defined on which cooling lines can be located. The 
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diameter of the lines and the thermal data of the media can also be specified for the 

cooling lines (Chen, 2002).   

The definition for spray is relatively simple since spray is applied only on the parting 

surface and die cavity. Rectangular areas on the parting surface can be defined to 

represent spray areas. The procedure to define a spray area is: 

1) Define the die configuration including parting plane (may be a stepped parting 

plane); 

2) Construct a sketch plane perpendicular to the opening direction and at the middle 

of insert box; 

3) Calculate the intersection contour of the part with parting plane; 

4) Project the contour on the sketch plane for drawing reference; 

5) Define rectangle spray areas on the sketch plane.  

 

The drawing procedure can be illustrated by Fig. 2.15 ~ 2.17.  
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Section I-Figure 2.15: A part with stepped parting plane 

 

Section I-Figure 2.16: Define a sketch plane and the intersection contour of part 
with parting. 
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Section I-Figure 2.17: Add a spray area at sketch plane by define a rectangle region 
(in blue color). 
 
Like other components (die or part), cooling lines are represented by voxels. Thus the 

heat transfer between cooling line and other components (die or insert) is modeled using 

the same finite difference equation with the assumption that the media temperature in the 

cooling line is constant.  

Modeling actual spray effects is complicated but it is modeled approximately by simply 

increasing the heat transfer coefficient between the sprayed region and air. In the 

calculation, if the die surface is in spray area, its coefficient is increased to a certain value 

that is user selectable.  

2.10 Handling Parting Surface 

A parting surface is the contact surface between ejector die and cover die. According to 

the surface complexity, the parting surface can be classified into two types, a simple 

parting plane and stepped parting surface. A simple parting plane is a single plane that 
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splits the cover half and ejector half and the whole surface is at the same plane. A stepped 

parting plane actually contains multiple planes connecting each other to form a complex 

surface. Fig. 2.18 shows an example of stepped parting plane.   

The parting plane plays an important role in equilibrium temperature calculation since it 

determines the heat transfer condition at interface, i.e. heat transfer between steel-steel 

and steel-air. Detailed treatment for the calculation was discussed earlier. Therefore, an 

important work is to split the die shoe into two pieces, cover die and ejector die in the 

voxel model. In the current algorithm, only the part model is created by discretizing the 

CAD model into voxel model. The die voxel model is then constructed based on the part 

voxel model. Therefore, a question to be answered is how to split die into two halves if 

the user has defined a parting plane as Fig. 2.18.  

Cai (2002) developed an algorithm to easily define stepped parting planes and internal 

parting plane. The output of the complex parting plane contains some loops, which are 

actually intersection vertexes of planes with the die box or part, with an indicator for 

external plane or internal plane. His technique can be used to split the die into two pieces.  
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Section I-Figure 2.18: An example of complex stepped parting plane. This stepped 
parting plane contains 6 separate planes. 
 
If the parting surface is a simple parting plane, the splitting procedure is: 

 

1) Rotate the part model and parting plane so that Z direction is the opening 

direction; 

2) For each voxel at X-Y bottom plane, march along Z direction to the top; 

3) If no part voxel is encountered, die is split at simple parting plane; 

4) If there is part voxel encountered, die is split the first time a part voxel is 

encountered. 
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For a stepped parting plane, it becomes a bit more complicated since the first task is to 

search which loop that each X-Y bottom voxel corresponds to. The procedure to split the 

die based on the loops information is then: 

 

1) Rotate part so that Z direction is opening direction; 

2) Project the loops to the bottom plane of die box; 

3) Triangulate projected loops (polygons) which may be convex or  concave 

polygons; 

4) For each voxel at the bottom plane, calculate which triangle that the voxel center 

point is in. Thus the loop that the voxel belongs to is known since each triangle is 

associated with a loop.  

5) For this voxel, calculate the height of the parting plane (since its loop is known 

from 3); 

6) Split die box for this voxel using simple parting plane technique;  

7) This sequence is used on external planes then on internal planes. External parting 

surfaces represent parting surfaces where the two die halves meet outside the 

part.  Internal parting surfaces represent the parting surfaces that are inside the 

part. 

By this method, the two pieces of die (cover and ejector) can be separated and its 

interface can be modeled. The cover die after splitting for example in Fig. 2.18 is shown 

in Fig. 2.19.  
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Section I-Figure 2.19: Voxel model of cover die after spitting.   
 

2.11 Computational Efficiency 

2.11.1 Two-step method 

The SOR solver requires an initial value for iteration. The closer this initial value is to the 

final result, the faster the computation converges. In addition, designers are usually 

concerned with part and insert temperature more than die shoe temperature. Thus in a 

two-step method, more effort is put on initial temperature of insert and part to improve 

the computation efficiency. In the first step, a coarse mesh and loose convergence 
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criterion are applied to the whole domain (die, insert and part). The result of first step is 

used as the initial value for the second step computation (by interpolation) where the 

mesh is refined and a tight convergence criterion is applied. In the second step, the 

computation is limited to the insert and part. Since the initial value is close to the final 

result, the computation converges quickly. Due to the application of a refined mesh and 

high convergence criterion, the accuracy for insert and part temperature can be ensured. 

Experiments showed that similar results could be obtained while the run time was reduce 

up to 40%.  

2.11.2 Heat source linearization for asymptotic model 

Due to the relationship between temperature and released heat for part voxels, the source 

term of a part voxel changes during the calculation. This change, which is non-linear 

(Fig. 2.20), causes two problems and increases run time.  First, the source term needs to 

be computed for each part voxel at each iteration; and second, the changing source term 

slows convergence. To alleviate these problems, a linearized model is applied, in which a 

few line segments are used to approximate the heat released function. In Fig. 2.20, each 

segment represents the linearized relationship between temperature and heat. The source 

term then can be written as: S = a*T + b. The first term a*T can be moved to left hand 

side in Eq. (2-10). The term b is left on the right hand side of Eq. (2-10) but it does not 

change in this interval. There is no need to re-compute the source term if the temperature 

stays in the same interval. The calculation also converges faster due to the more stable 

source term. Experiments showed that the run time could be reduced about 20% 

compared to the nonlinear representation for pure asymptotic model. For the combination 
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model (asymptotic and surrogate), the run time is reduced about 5% since asymptotic 

model only takes effect in the early 20% computation. 

 

 

Section I-Figure 2.20: Asymptotic model and its linearized model for relationship 
between temperature of part voxel and heat it releases. 

2.11.3 Symmetric part 

Some parts are symmetric then only half or even quarter of them needs to be computed. 

Like transient solvers, for these cases, an isothermal layer is set at its central line and only 

one half is computed. The other half can be mirrored after the computation is finished. 

The run time is reduced proportionally.  
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2.12 Data Storage  

The result output is volume data, which actually contains three sets of data corresponding 

to temperatures of three components (part, cover insert and ejector insert). The volume 

data can be rendered by CastView post-processor where ray tracing is applied. The three 

sets of data can be output in three buffers to the post-processor for display. However, this 

will cause memory waste because some voxels in each buffer are not used.  

A better way is to store the whole data in a single buffer but this requires some 

modification of the current post-processor. The original ray tracer in CastView renders 

the whole volume data at once. Since the output data from equilibrium temperature 

analysis is an array of integer data, containing temperature of three components (cover, 

ejector and part), if only the result of a component is desired, a filter between temperature 

volume data and ray tracer is necessary.  

Section I-Figure 2.21: Store three data sets in a single buffer by using lower 2 bits as 
flag to distinguish die, cover insert and ejector insert. The 14 higher bits are used to 
store temperature data. 
 
Since the temperature range for die casting can not be outside of 0 ~ 1000 and an integer 

type (16-bits) can stores a value between 0 ~ 65536, the lower 2 bits can be used as flags. 

Fourteen bits can still store a value between 0 ~ 16384, sufficient for temperature 
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representation. The setting for the lower two bits is: 00 -- part voxel; 01 -- cover insert 

voxel and 10 -- ejector insert voxel. Thus, before the rendering, the filter fetches the 

appropriate data from volume data and sends it to the ray tracer.  

2.13 Conclusions  

1) An algorithm based on the Finite Difference Method for equilibrium temperature 

calculation for die casting process has been developed to speed up part and die design 

at early design stage and help optimize cooling, heating and cycle design. 

2) The algorithm is built on the assumption that the heat released from part equals to the 

heat absorbed by the environment during a cycle after the production reaches the 

steady state. The solver SOR was chosen to solve the linear equation system.  

3) A few models have been tried to compute the heat released from part voxels. The 

combination of asymptotic model and surrogate model are chosen because they can 

compute the ejection from average temperature.  

4) Heat transfer at the interface, cooling line and spray effect are addressed in the 

algorithm. 

5) Special attention is paid to computational efficiency and data storage to save run time 

and memory 
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3. EXAMPLES AND VERIFICATION OF EQUILIBRIUM 
TEMPERATURE ANALYSIS FOR DIE AND PART  

3.1 Implementation 

The program for equilibrium temperature analysis is being integrated into the CastView 

software using Visual C++ on the MS Windows platform. The examples in this chapter 

were run on a 2.4 GHz Pentium IV PC with 1 GB memory. The typical run time was less 

than 1 minute with resolution of 200 voxel at maximum dimension along X, Y and Z 

directions.  

3.2 Case 1: Flat Part 

The first part to be discussed is a flat part (shown in Fig. 3.1). For comparison, the 

transient temperature simulation of 100 cycles was run on Abaqus using the same 

parameters. It is assumed that at cycle 100, the production has reached the steady state 

and the time average temperature of die is the equilibrium temperature.  
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Section I-Figure 3.1:Geometry of flat part, rendering in CastView. 
 
The two sets of analysis parameters on Abaqus and CastView are the same and is list 

below, which comes from CastView data file. The meanings of most parameters are clear 

by their names. The parameters in Advanced section are for SOR solver and convergence 

tolerance.  

 

General: 

cycle_time: 51 sec 

die_close_to_end_of_fill: 1 sec 

end_of_fill_to_die_open: 9 sec 

time_to_eject: 7 sec 
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spray_time: 0 sec 

room_temp: 30 C  

die_con_file: fp-part.cvdcg 

cooling_file(0-no__1-yes): 1 fp-part.cvcln 

spray_file(0-no__1-yes): 0 

 

Casting: 

material: Al380 

density: 2.76 g/cm^3  

specific_heat: 0.963 J/g-K  

conductivity: 109 W/m-K 

latent_heat: 389 J/g  

injection_temp: 620 C  

liquidus_temp: 598 C  

solidus_temp: 538 C  

 

Die: 

holder_block_material: H13 

insert_material: ST4140 

holder_block_conductivity: 40 W/m-K  

insert_conductivity: 29 W/m-K  

heat_transfer_coefficient_steel_to_steel: 5000 W/m^2-K  

heat_transfer_coefficient_steel_to_air: 16 W/m^2-K 

heat_transfer_coefficient_part_to_cavity: 5000 W/m^2-K  

 

Others: 

symmetry(0-none__1-x__2-y__3-xy): 1 

part_temp(0-ejection__1-average): 0 

output_die_temp(0-no__1-yes): 0 
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top_platen(0-no__1-yes): 0 0 C 

bottom_platen(0-no__1-yes): 0 0 C 

left_platen(0-no__1-yes): 0 0 C 

right_platen(0-no__1-yes): 0 0 C 

front_platen(0-no__1-yes): 0 0 C 

back_platen(0-no__1-yes): 0 0 C 

 

Advanced: 

first_step: 0.01 

second_step: 0.001 

SOR_Omega: 1.9 

asymptotic_temp: 150 C 

 

Since Abaqus provides the option to output temperature change into a text file, the time 

average temperature, i.e. the equilibrium temperature can be obtained by integrating the 

temperature and dividing by the cycle time. The calculation is shown by Fig. 3.2. The 

time average temperature at each nodal point is then: 

 

cyclet
tTT

T
2

)( 21∑ ∆∗+
=  

 

Therefore, the Abaqus results (equilibrium temperature of the die and part) can be 

compared to CastView. Further, the comparison can be performed not only by 

temperature pattern but also the temperature values since the result data from Abaqus is 

available.  
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Section I-Figure 3.2: Calculate the time average temperature over a cycle from 
Abaqus result 
 

The analysis of flat part was run on CastView with two different voxel resolutions, 200 

voxels and 300 voxels. The voxel resolution is referring to the voxel number on the 

maximum dimension among x, y and z direction of the part bounding box. For example, 

the dimension of xyz bounding box of the flat part is 152.4mm×275.2mm×56.8mm. The 

y dimension is larger than the other two. For the 200 voxels case, there are 200 voxels on 

this dimension. The voxel size is then 275.2/200 = 1.376 mm. The dimension of the 

whole die box is 300mm×400mm×500mm. The total voxel number in the computational 

domain is then (300/1.376) ×(400/1.376) ×(500/1.376) = 218×290×363 = 22 948 860. 

The voxel size for the 300 voxels case is 275.2/300 = 0.917 mm. The total voxel number 

is then (300/0.917) ×(400/0.917) ×(500/0.917) = 327×436×545 = 77 701 740. The run 

time for the 200 voxels case is 1 minute 4 seconds and the run time for the 300 voxels 



 74

case is 4 minutes 12 seconds. The run time to finish 100 cycles on Abaqus on a similar 

PC was about 7 days.  

Fig. 3.3 shows the equilibrium temperature of ejector die from Abaqus. As described 

earlier, this is from the average temperature and is read into Abaqus for display. It can be 

clearly seen that the hot spot is at the middle rib and the temperature range is 106 oC ~ 

378 oC. The results of two resolutions from CastView are shown in Fig. 3.4. The 

temperature range of the 200 voxel resolution is 140 oC ~ 387 oC and the range of the 300 

voxel resolution is 141 oC ~ 386 oC.  This may indicate that the 200 voxel resolution is 

enough for this part since to increase the voxel number does not change the results much. 

It can also be seen that the three temperature patterns are very similar and the hot spot in 

three results is at the middle rib.  
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Section I-Figure 3.3: Equilibrium temperature of ejector insert  from Abaqus 
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Section I-Figure 3.4: Equilibrium temperature of ejector insert  from CastView. 
Left: 200 voxel resolution; Right: 300 voxel resolution. 

 
Section I-Figure 3.5: Part ejection temperature from Abaqus 
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Section I-Figure 3.6: Part ejection temperature from CastView using combined 
asymptotic and surrogate model (Left: 200 voxel resolution; Right: 300 voxel 
resolution). 
 
The results for part ejection temperature from both CastView and Abaqus are compared, 

which are listed in Fig. 3.5 and Fig. 3.6. The calculation from CastView is obtained using 

combined asymptotic and surrogate model. Unlike die average temperature, the part 

ejection temperature can be obtained from Abaqus at the cycle 100 without further 

treatment. It can be seen that the temperature range for Abaqus is 205 oC ~ 574 oC.  The 

temperature range of 200 voxel resolution for CastView is 265 oC ~ 561 oC and that of 

300 voxel resolution is 265 oC ~ 571 oC.  It can be seen again that the temperature values 

from two voxel resolutions are not much different. The lower bound from CastView is 

slightly higher than that from Abaqus with similar pattern in both cases.  
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A deeper comparison between both cases is the temperature value comparison. Since 

Abaqus can output temperature into text file, it is possible to compare the temperature 

value at the same location. However, there is a little work to be done for such comparison 

since Abaqus applies Finite Element Method and CastView applies Finite Difference 

Method and one mesh needs to be transformed into another mesh. Here we transform 

FEM mesh into FDM mesh (Fig. 3.7). The procedure is as follows; 

1) FEM mesh and FDM mesh are aligned at low left corner of bounding box, which 

is the origin; 

2) For center of each voxel, calculate the coordinate values. The temperature of this 

center from FDM is known from CastView results as T; 

3) Calculate which FEM element this voxel center is in; 

4) Calculate the temperature T’ at this point from FEM data by interpolation since 

the temperatures at the 4 vertices are known as T1, T2, T3 and T4; 

5) Compare the difference between T and T’. 

Such comparison on part ejection temperature and die average temperature are shown in 

Fig. 3.8 and Fig. 3.9 in difference percentage. Since the results of 200 voxel resolution 

and 300 voxel resolution are not different much, the comparison was done on 200 voxel 

resolution. The range of difference for part is 0% ~ 23% and for die is 0% ~ 28%. For 

part, the maximum difference happens at the overflow tip and for die, the maximum 
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difference happens at the corner of the box. It can be expected that the difference between 

two cases is partially due to error of interpolation.  

 

Section I-Figure 3.7: Comparison of FDM data and FEM data by interpolation 

 
Section I-Figure 3.8: Part ejection temperature difference in percentage of Abaqus 
result and CastView result (200 voxel resolution). 



 80

 
Section I-Figure 3.9: Die equilibrium temperature difference in percentage of 
Abaqus result and CastView result (200 voxel resolution). 
 

3.3 Case 2: Zinc Part 

The die configuration is a little special for this part. There are four cavities in this die and 

no insert and the cavities are in the die directly. Another characteristic is there are six 

cooling lines in the die and a chiller is used in cooling lines, which helps maintain the 

cooling line temperature at ~10 oC. The melting point of zinc alloy is low (~380 oC) 

compared to other alloys. Since the dimension is small (only 90 mm on largest dimension 

for multipart cavity), the cycle time is only 9.35 seconds. The complete calculation 

parameters are listed below. 
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General: 

cycle_time: 9.35 sec 

die_close_to_end_of_fill: 0.23 sec 

end_of_fill_to_die_open: 6.08 sec 

time_to_eject: 0.2 sec 

spray_time: 1 sec 

room_temp: 10 C  

die_con_file: Casting.cvdcg 

cooling_file(0-no__1-yes): 1 Casting.cvcln 

spray_file(0-no__1-yes): 1 casting.cvspr 

 

Casting: 

material: Zn  

density: 6.6 g/cm^3  

specific_heat: 0.419 J/g-K  

conductivity: 109 W/m-K 

latent_heat: 120 J/g  

injection_temp: 417 C  

liquidus_temp: 389 C  

solidus_temp: 380 C  

 

Die: 

holder_block_material: H13 

insert_material: H13 

holder_block_conductivity: 29 W/m-K  

insert_conductivity: 29 W/m-K  

heat_transfer_coefficient_steel_to_steel: 5000 W/m^2-K  

heat_transfer_coefficient_steel_to_air: 20 W/m^2-K 

heat_transfer_coefficient_part_to_cavity: 5000 W/m^2-K  
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Others: 

symmetry(0-none__1-x__2-y__3-xy): 0 

part_temp(0-ejection__1-average): 0 

output_die_temp(0-no__1-yes): 0 

top_platen(0-no__1-yes): 0 0 C 

bottom_platen(0-no__1-yes): 0 0 C 

left_platen(0-no__1-yes): 0 0 C 

right_platen(0-no__1-yes): 0 0 C 

front_platen(0-no__1-yes): 0 0 C 

back_platen(0-no__1-yes): 1 30 C 

 

Advanced: 

first_step: 0.01 

second_step: 0.001 

 

The 3D part geometry is shown in Fig. 3.10 and the cooling lines are shown in Fig. 3.11 

(both sides). The spray areas are also shown in Fig. 3.12. 
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Section I-Figure 3.10: Geometry of the multipart cavity 
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Section I-Figure 3.11: Cooling line pattern at cover and ejector side (totally 6 
cooling lines 
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Section I-Figure 3.12: Spray pattern (whole area on die surface for both sides) 
 
The Abaqus results and CastView results are compared, where CastView results are 

computed from pure asymptotic model and combined asymptotic and surrogate model. 

The die equilibrium temperature from Abaqus is shown in Fig. 3.13 with the range of 17 

oC ~ 247 oC. Again, the equilibrium temperature from Abaqus is computed by taking 

average of dynamic temperature over a cycle. The corresponding CastView result is 

shown in Fig. 3.14 and Fig. 3.15, with range of 34 oC ~ 260 oC for pure asymptotic model 

and range of 33 oC ~ 235 oC for mixed model. Both CastView results look like the pattern 

of Abaqus result. However, result from mixed model is better than that from pure 

asymptotic model since the temperature value is closer to Abaqus result.  

The part ejection temperature from Abaqus is shown in Fig. 3.16, with range of 126 oC ~ 

234 oC. The corresponding CastView results from both models are also shown in Fig. 

3.17 and Fig. 3.18. The pure asymptotic result has the temperature range of 194 oC ~ 316 

oC and the mixed model has the temperature range of 222 oC ~ 284 oC. It can be seen 

again that these results have similar patterns. However, compared to die temperature, the 

difference between CastView part result and Abaqus part result is larger. This may be 

because 1) The thermal diffusivity of die is less than that of part; 2) Die is surrounded by 

air with constant temperature. These reasons make part temperature more sensitive to 

errors or other factors. In addition, the geometry of die in CastView and Abaqus is 

different since the geometry of die for Abaqus was generated by CAD system and the 

detailed feature can be modeled. The geometry of die for CastView can only be generated 



 86

by CastView itself, which is actually a simple die box. The difference of die geometry 

should also have some impact for part temperature calculation.  

3.4 Conclusions 

1) Two cases were selected for test and verification of the algorithm for equilibrium 

temperature analysis. The analyses were run on CastView and on numerical 

simulation software Abaqus using the same parameters.  

2) In the flat part case, the simulation of 100 cycles was run on Abaqus to reach 

quasi steady state and the run time was a few days. The run time on CastView for 

equilibrium temperature was only a few minutes.  

3) The temperature patterns of ejector insert and part from two packages are 

compared. For flat part case, the temperature values of two results are compared 

by interpolation since the numerical methods of two packages are different (one is 

FDM and the other is FEM).  

4) In both cases, the temperature patterns of die and part from both packages are 

very similar and the hot spot is at the same location, which indicates our 

algorithm for equilibrium temperature is valid and efficient.  

5) In the comparison of zinc part, the part results from CastView and Abaqus are 

more different that the flat part. This may be caused by a few reasons including 

the different die geometry in two computations.  
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Section I-Figure 3.13: Die equilibrium temperature from Abaqus 
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Section I-Figure 3.14: Die equilibrium temperature from CastView (Pure 
asymptotic model) 

 
Section I-Figure 3.15: Die equilibrium temperature from CastView (Asymptotic + 
surrogate) 
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Section I-Figure 3.16: Part ejection temperature from Abaqus 

 
Section I-Figure 3.17: Part ejection temperature from CastView (Pure asymptotic 
model) 
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Section I-Figure 3.18: Part ejection temperature from CastView (Asymptotic + 
surrogate) 
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4.  IMPROVEMENT OF GEOMETRIC REASONING 
ALGORITHM FOR FILL PATTERN 

4.1 Introduction 

The original algorithm applied in CastView for fill pattern makes many assumptions and 

simplifications. The assumptions and simplifications are helpful to reduce calculation 

thus reduce computation time. However, they also cause some shortcomings. The major 

problem is sometimes the fill pattern predicted by CastView is not correct, compared to 

numerical simulation result by commercial software, especially for processes with 

complex cavity or multiple gates. The incorrectness may come from the assumptions and 

simplifications. Therefore, it is important to improve or replace the current algorithm for 

fill pattern reasoning. Today’s computers allow using more complex calculation without 

much time penalty (however, to solve the conservation equations is still too time-

consuming thus is not the direction of this research). This chapter describes an improved 

algorithm which overcomes some problems of the old algorithm but does not increase the 

computation time significantly  

4.2 Shortcomings and Problems of Old Model 

1) Metal speed not included 

Velocity includes speed and direction. Generally speaking, the speed is determined by 

pressure gradient and other factors then speed determines the fill pattern. However, in the 

old model, speed is not considered and all moving voxels (flow front) therefore 

effectively have the same speed. As a result, some space may be filled (occupied) faster 
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than it should be. These filled voxels then obstruct the flow channel for other moving 

voxels, which causes error for the whole fill pattern. This is a serious problem of the 

current model and needs to be corrected in new algorithm. 

2) Flow obstruction calculation 

In the old model, when there is an obstruction, the new flow front is calculated based on 

the available empty voxels. As a result, a flow will be reflected from a central 

obstruction, which is not correct (shown in Fig. 4.1 and Fig. 4.2). Fig. 4.1 shows the 

correct flow pattern when there is an obstruction. The left one is a sketch as 

demonstration and the right one is a numerical simulation for a simple part using 

MagmaSoft. Fig. 4.2 shows the result from old model. In the new method, this 

calculation is improved. The new flow vector is calculated not only based on the 

available empty voxels, but also on the original flow vector and the near flow vectors.   

  

Section I-Figure 4.1: Actual flow pattern when there is an obstruction. Left: sketch; 
Right: numerical simulation from MagmaSoft. 
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Section I-Figure 4.2: Result calculated using old algorithm when there is an 
obstruction. Left: sketch; Right: CastView result from old algorithm. 
 

3) Cavity with multiple gates  

For some parts with thin wall or have special shape, multiple gates are usually applied to 

avoid filling problem. A hypothetical example is shown in Fig 4.3. Generally, an ideal 

engineering design for multiple gates and the resistance at the gates themselves should 

ensure the melt enters the cavity simultaneously from each. In this situation, cavity fill 

will start after the runner system pressurizes which should not happen until the runner 

system is nearly full. Even if melt reaches gate C before the other two, the cavity will not 

start to fill because the gate resistance is significantly higher than the runner resistance. 

However, the old model can not distinguish if this is a good design. Due to different fill 

distance of OA, OB and OC, the melt reaches B earlier than it reaches A and C. The melt 

will then fill the cavity at B before it reaches A and C even the thickness at C is thin 

enough, which will makes an incorrect prediction for the fill pattern.  
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Section I-Figure 4.3: Melt should reach gate A, B and C simultaneously for a well 
designed runner system with multiple gates 
 
4) Flow resistance not considered. 

Flow resistance is an important concept in qualitative reasoning for fill pattern since 

pressure is not calculated. Flow resistance is difference at different location due to 

different geometric characteristics. The flow resistance affects the flow speed then affects 

the whole fill pattern.  

4.3 Improvements in New Algorithm 

The basic idea is to correct the problems mentioned earlier but not to increase 

computation time or memory requirements significantly since the efficiency is a principal 

goal. The following improvements have been accomplished: 

1) Speed calculation  

In the fill pattern algorithm, a list is used to store the flow front voxels. The cavity voxels 

can be classified into three groups, filled voxels, empty voxels and flow front voxels. The 

initial flow front voxels are gate voxels with the initial incoming vector. In each 
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calculation step, the flow front voxels will fill some empty voxels and generate new flow 

front voxels. This calculation is continued until the whole cavity is filled.  

A flow front voxel had a direction (vector) but no speed in the original algorithm. In 

another word, all flow front voxels had the same speed. In the new algorithm, speed is 

included (qualitatively) and each flow front voxel may have a different speed. Both speed 

and the direction of flow may change during cavity filling. There are three possibilities 

that cause speed change:  

a) When the flow hits an obstruction. As the flow vector changes, the speed drops 

due to energy loss;  

b) When a voxel is filled by more than one voxel. The speed of outgoing voxel is 

calculated based on the speed of incoming voxels;  

c) When flow resistance (discussed in detail later) changes due to local geometry the 

flow speed then may change.  

The speed is also rounded to a small number of speed levels to save the computation and 

storage expense. This is reasonable since we are calculating the fill sequence and not the 

dynamic change with time. Furthermore, we can freely scale all the speeds of flow front 

voxels at the same time, which allows us to normalize the speeds to a fixed range. For 

example, if all the speeds are too small or too large, we can always normalize them to the 

range of 0 ~ 100.  
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2) Flow resistance 

A flow resistance for each flow front voxel is defined based on local geometric 

characteristics. One example of flow resistance is shown in Fig. 4.4. Flow is coming from 

A and will fill B earlier than fill C since flow resistance at C is larger than that at B. Flow 

speed at C is reduced due to larger flow resistance if the thickness of C is small enough. 

Apparently the flow resistance is related to cavity openness. The more open, the smaller 

the resistance. In addition, it is related to the flow vector. For example, in Fig. 4.5, flow B 

will have larger resistance than flow C when they are filling the two ribs because there is 

an angle between flow B and the rib, which makes it hard for flow B to fill the rib.  

An initial definition of cavity openness might be part wall thickness. However, part wall 

thickness does not represent the cavity openness very well. An example is the part shown 

in Fig. 4.4 where the part is flat and the thickness in Z direction (the direction coming out 

from page) is the same. The wall thickness will be the same everywhere but the openness 

is different in different regions. For example, the openness at B is larger than that at C.  

However, the variation in openness of different parts of the same shape with differing 

thickness would be captured by wall thickness. 

 

Section I-Figure 4.4: If flow coming from entrance A to fill ribs B and C. Flow will 
fill B earlier than fill C because B is more open and has small resistance. 



 97

 

Section I-Figure 4.5: Flow C will fill rib earlier because flow B has larger resistance 
than C due to the angle between flow B and the rib. 
 

 

Section I-Figure 4.6: Second method to calculate flow resistance based on thickness 
and speed components along x, y and z directions. 
 
To calculate the flow resistance, we need to consider both the local openness and flow 

vector at the same time. The second attempt to calculate flow resistance is shown in Fig. 

4.6. The thickness along x, y and z direction is calculated separately, denoting as tx, ty and 

tz. The speed components along x, y and z direction are also calculated as vx, vy and vz. 

The flow resistance is then defined as: 



 98

 

||||||
1

zzyyxx vtvtvt
r

++
=  (4-1) 

 

 

Section I-Figure 4.7: New problems for second definition of flow resistance. In the 
left example, the flow resistance calculated using Eq (4-1) is larger than it should be. 
In the right example, both cases would have the same flow resistance, which is not 
correct. 
 
Using this definition, the problem of the flat part with the first definition can be 

eliminated since the thickness at different location is distinguished. However, it would 

cause other problems, which are illustrated in Fig. 4.7. In the left example, if both the 

flow vector and part wall is inclined with respect to the coordinate axes, the calculation 

result from Eq. (4-1) is large because tx and ty are both small. However, the actual flow 

resistance is small because the wall open direction is the same of flow vector. In the right 

example, calculation results using Eq. (4-1) of both cases are the same because the 

thickness component at x and y direction are the same. However, it is apparent that the 

openness of two cases is different. Therefore, the second definition can not represent the 

flow resistance correctly.  
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Section I-Figure 4.8: Third definition for flow resistance. The resistance is 
calculated based on local geometry openness corresponding to flow vector. 
 
The third resistance thus is defined as inverse of the multiplication of part voxel number 

along flow vector and part voxel number at the plane perpendicular to flow vector. This 

can be shown by the example in Fig. 4.8 to calculate the flow resistance at flow front 

voxel A with a flow vector. A flow line is first constructed along flow vector (shown as 

the dash line in Fig. 4.8) and we count the number of part voxel along the local region at 

this flow line, denoting the number as m. Then a flow plane through voxel A but 

perpendicular to the flow line is constructed, shown as an ellipse in Fig. 4.8. We count 

the number of part voxel in local region at the flow plane, denoting as n. Note that voxel 

B is not counted because it is not in the local region even it is at the flow plane. A local 

region means there is no die voxel between the current voxel and the target voxel. Then 

the flow resistance is computed as )/(1 nmr ×= . By this definition, we can address both 

local openness and flow vector. The flow resistance then can be used to compute flow 

speed.  
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Actually, we only need the inverse of flow resistance, m×n during the calculation. We 

define the flow potential (not to be confused with potential energy) as p = s×m×n, where 

s is the speed. In each calculation step, we first calculate p for every flow front voxel then 

take the overall average potential p  as the threshold. If the potential of a flow front is 

larger than the threshold, this voxel is said to have enough potential to move. If not, this 

voxel is held into the next step until it has larger potential than the threshold. In addition, 

since there are only limited flow vector in discrete space, we can pre-compute the 

locations of voxels for each flow line and each flow plane associated with each flow 

vector and store them in a table. When computing flow resistance, we only need to check 

directly if the voxels in the table are cavity voxels. Further, we only check voxels in the 

flow plane within a certain range, say, 10×10 voxels around the flow front voxel to save 

computation.  

3) Vector change at obstruction 

When a flow hits an obstruction, the flow vector is going to change. In the previous 

algorithm, the new flow vector was calculated by simply constructing a vector from the 

current flow front voxel to the empty voxel. With the improvement, this is changed to the 

sum of original vector and position vector (vector from current voxel to empty voxel). In 

Fig 5-9, solid dots represent obstructions and blank dot represent empty voxels. A flow 

front voxel has the vector A and hits an obstruction. In the old algorithm, there were two 

new vectors, B and C while in the new one, the two new vectors are D (sum of A and C) 

and E (sum of A and B). In this way, the new direction is not only related to position but 

also related to the original direction, which gives a better way to calculate new direction. 

This can be considered to include the effect of inertial term, which is relative to the 
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original direction. The calculation results using the old and new algorithms are shown in 

Fig. 4.10 ~ 4.11 using a plate part with a through hole, where the hole serves as the 

obstruction. When the flow hits the obstruction, it should disperse more like the pattern 

shown in Fig. 4.11 than Fig. 4.10.  

 

Section I-Figure 4.9: New vector calculation, where A is oncoming vector, B and C 
are vectors based on available voxels, D and E are calculated outgoing vectors. 

 

Section I-Figure 4.10: Flow pattern when hitting an obstruction when using old 
algorithm for outgoing vector calculation. 
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Section I-Figure 4.11: Flow pattern when hitting an obstruction. Left: using new 
algorithm for outgoing vector calculation; Right: MagmaSoft result. 
 
There is a pre-computed angle table to search empty voxels when a flow hits 

obstructions. The table contains voxel locations of 13 different angles, which is between 

current flow vector and vector to empty voxels, ranging from 35o to 180o. The 

neighboring empty voxels can be found through this angle table. The angle search starts 

from smallest angle to largest angle. Whenever there is an available angle, which means 

there is an empty voxel, the search stops and takes this empty voxel to calculate the new 

vector in the old algorithm. In other words, the search only selected one angel as the 

output. As a result, some available vectors are ignored and the new vectors are not the 

complete possible vectors. Fig. 4.12 shows a fan gate to be filled. The flow should move 

smoothly from back to front and the flow front should be nearly a “flat line”, which is the 

design intent of the fan gate. However, as shown in Fig. 4.13, the result from original 

algorithm is not an anticipated. 
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The reason for this is that only one angle was considered to calculate new vectors. As the 

flow advances, the thickness is smaller and smaller then the resistance becomes larger 

and larger. The flow would move to any possible direction. If there is one angle 

limitation, the flow front becomes irregular, as shown in Fig. 4.13. In the new algorithm, 

more available angles are provided to be searched. The results for the fan gate for 2, 3 

angles and 4 angle searching are shown in Fig. 4.14 ~ 4.16. It can be seen that result from 

2 angle searching is much better than one angle searching. Result of 3 angle searching is 

better than 2 angle searching while result of 4 angle searching is better than 3 angle 

searching. However, there is efficiency penalty to search more angles. Compared to the 

original run time, the run time on 2, 3 and 4 angel searching are about 25%, 40% and 

50% more, respectively. For the tradeoff, we choose 2 angel searching since it is much 

better than one angle searching and only slightly increases the run time.  

 

 

Section I-Figure 4.12: Cad Drawing of Fan Gate 
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Section I-Figure 4.13: A fan gate to be filled and the result using original algorithm 
with only one angle search 

 

Section I-Figure 4.14: Fill pattern result using two angle searching. The flow front is 
flatter than using one angle searching. 
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Section I-Figure 4.15: Result of three angle searching which is better then two angle 
searching 

 

 

Section I-Figure 4.16: Result of four angle searching which is better than three angle 
searching 
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Flow speed is also affected when flow hits obstruction since there is energy loss. The 

change of speed is related to the angle between the original vector and the new vector. 

The larger the angle is, the more the speed decreases. For example, the speed loss for the 

180o angle should be larger than that for the 35o angle. There are totally 13 angles in the 

angel table in ascending order and they are grouped based on the angle value. The 

reduced speed for each group is also in ascending order.  

4) Multiple gates 

If a part has multiple gates with different distances to the biscuit, the flow may or may 

not start to fill cavity simultaneously. If the runner system is well designed, the cavity fill 

will start from gates simultaneously due to the large resistance at gates. For the example 

shown in Fig. 4.3, cavity fill will start after the runner system pressurizes which should 

not happen until the runner system is nearly full if this is a properly designed runner 

system. Even if melt reaches gate C before the other two, the cavity will start to fill only 

to a small degree because the gate resistance is significantly higher than the runner 

resistance. However, in the original algorithm, due to different fill distance of OA, OB 

and OC, the melt reaches C earlier than it reaches A and B. The melt will then fill the 

cavity at C before it reaches A and B, which will makes an incorrect prediction for the fill 

pattern if this is a well designed runner system. 

The new algorithm provides an option to allow the user to specify if he wants the cavity 

fill to start at multiple gates simultaneously. In the example of Fig. 4.17, three gates 

(identified with a red dot) and the biscuit (in green circle) are specified, which indicates 

this is a properly designed runner system. During the fill pattern calculation, the surface 
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analysis is done first to find the wall thickness information. For each gate point, the local 

region with the same thickness is found and is set to be a gate region. All gate voxels are 

assigned a very large flow resistance, which will force the flow to stop at gate region 

until the runner system is filled. The flow can start to fill cavity simultaneously from gate 

regions. Fig. 4.18 shows the result if the user does not specify the multiple gates while 

Fig. 4.19 shows the result if he does. It is clearly shown that in Fig 5-18, the three flows 

start to fill cavity almost simultaneously.  

 

 

Section I-Figure 4.17: Three gates are specified with red spots. The green circle 
denotes the biscuit where the initial flow front starts from. By specifying these, the 
user wishes the cavity fill start at multiple gates simultaneously. 
 



 108

 

 

Section I-Figure 4.18: Result using the usual way. The cavity fill starts from central 
runner before other runners have not been filled. 
 

 

 

Section I-Figure 4.19: Result if the user specifies the multiple gates. Cavity fill starts 
from three gates simultaneously after three runners are all filled. 

 

 



 109

5) Bias removal  

The fill pattern for a symmetric part should also be symmetric (for example, the flat part 

with hole in Fig. 4.10). However, the analysis result from old algorithm was not 

symmetric. Careful inspection found that it was caused by the calculation sequence. As 

mentioned earlier, there is a list to store the flow front voxels. At each calculation step, 

the new flow front voxels are generated based on the sequence of old flow front voxels, 

i.e. from the front to the end. Since the number of voxel can be filled in a step is fixed 

due to mass conservation, there is fill competition for flow front voxels, which may 

generate fill bias. For example of Fig. 4.10, if in the initial flow front list, voxels at left 

side are the front and voxels at right side are the end, the voxels at left side will always be 

filled earlier than those at right side. As the calculation continues, there is more and more 

bias. The solution is to reverse the sequence at each step. At an odd step, the calculation 

is from the front of flow front list to its end while at an even step, it is from the end to the 

front. Thus the bias can be removed.  

6) Influence of neighboring voxels 

In the old algorithm, the calculation for each flow front voxel was independent of its 

neighboring flow front voxels. There was no influence between neighboring voxels. As a 

result, the flow lines were often dispersed. This differs from numerical simulation. 

Furthermore, occasionally there were small flows advancing too far compared to others, 

which should be incorrect. An example of old algorithm was shown in Fig. 4.10. Even 

after we apply the new calculation of vector (shown in Fig. 4.11), the flow lines are still 

too dispersed. In the new algorithm, the influence from neighboring voxels is addressed 
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by grouping flow front voxels and balancing their vector and speed, which helps reduce 

the dispersal. The flow front voxels are first grouped based on their neighbor relationship. 

In each group, the average vector and speed are calculated. Each flow front voxel is then 

slightly adjusted to the average vector and speed. This way does not eliminate the 

problem completely but can help balance the behavior of voxels within neighborhood.  

7) Efficiency issue 

Special attention was paid to efficiency for implementation of new algorithm. It is 

undesired that run time increases significantly due to the added computation. Some 

methods are applied to reduce computation: 1) Pre-computed tables of geometry 

information are used. 2) Real data are rounded to integers. 3) Variables are saved for later 

use. 4) Data structure and computation are optimized. With these treatments, the run time 

increase for the new algorithm is 20% ~ 50% compared to the old. 

4.4  Conclusions 

A new algorithm for visualization for fill pattern was designed based on the old 

algorithm. There are some improvements: 

1) Speed calculation is included. The change of speed of flow front is affected by local 

flow resistance. 

2) Flow resistance and flow potential are calculated during the analysis. Three 

definitions have been tried to model flow resistance. Flow potential determines 

whether a flow front has enough “potential” to move. 
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3) Vector change calculation at obstruction was redesigned. The simple examples of 

plate with hole and fan gate demonstrate the improvement.  

4) The user is provided the option to specify multiple gates, which ensures cavity fill 

start at multiple gates simultaneously. 

5) Fill pattern bias due to competition between flow fronts to fill empty voxels is 

removed by switching the sequence of flow front list.  

6) Influence of neighboring voxels is considered. Special attention is paid to 

computational efficiency issue. 
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5. EXAMPLES AND VERIFICATION OF VISUALIZATION 
FOR FILL PATTERN 

5.1 Implementation 

The program for fill pattern visualization has been integrated into the CastView software 

using Visual C++ on MS Windows platform. The examples in this chapter were run on a 

computer – 2.4 GHz Pentium IV PC with 1 GB RAM. The typical run time of CastView 

is about 10 minutes with resolution of 200 voxel along the maximum dimension. Four 

cases are demonstrated in this chapter. Three of them are compared to numerical 

simulation, including a simple part, a medium complex part and a very complex part. The 

other is compared to water analog. 

5.2 Case 1: Simple Plate Part 

The comparison was done between numerical simulation and qualitative reasoning since 

the accuracy of numerical simulation is higher. The first part is a simple plate part. The 

numerical simulation was performed on MagmaSoft by Ms. Haijng Mao. The run time on 

MagmaSoft was ~2 hours and the run time on CastView was only ~ 2 minutes. The part 

geometry is shown in Fig. 5.1, in CastView rendering. The results from MagmaSoft are 

shown in Fig. 5.2 and Fig. 5.3 with the courtesy of Ms. Mao. From the MagmaSoft 

results, it can be seen that the flow fills the central region first and then the two far 

corners.  The near two corners are the last regions to be filled. The visualization results 

from CastView using old algorithm are shown in Fig. 5.4 and Fig. 5.5 while the results 

using new algorithm are shown in Fig. 5.6 and 5.7. It can be seen that in the new results, 

the flow also fills the central region first and then far corners, finally near corners. Both 
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patterns of MagmaSoft result and new algorithm results are very similar. However, the 

old results are not similar to those of MagmaSoft. In the old results, the flow fills the near 

corners earlier and the last region to be filled is the central region, which is not correct. 

This comparison suggests the improvement. 

 

 

Section I-Figure 5.1: Simple plate part to be examined by MagmaSoft and 
CastView. 
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Section I-Figure 5.2: MagmaSoft result for simple plate part (with courtesy of Mao) 
 

 
Section I-Figure 5.3: MagmaSoft result for simple plate part (with courtesy of Mao). 
The two near corners are the last regions to be filled.  
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Section I-Figure 5.4: CastView result using old algorithm. The two near corners are 
filled too early.  
 

 

Section I-Figure 5.5: CastView result using old algorithm. The last region to be 
filled is the central region, which is not correct.  
 



 116

 

Section I-Figure 5.6: CastView result for simple plate part using new algorithm. 
 

 

Section I-Figure 5.7: CastView result for simple plate part using new algorithm. The 
last region to be filled is the two near corners, which is similar to the result from 
MagmaSoft.  
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5.3 Case 2: Part With Fingers 

The second part to be compared is a part with two fingers at both sides. The 3D part 

geometry is shown in Fig. 5.8. Again the numerical simulation was done on MagmaSoft. 

The run time on MagmaSoft was ~3 hours and the run time on CastView was ~6 minutes. 

The results from MagmaSoft are shown in Fig. 5.9 and Fig. 5.10. It can be seen that the 

first finger is filled simultaneously with the second half of part and the second finger is 

the last region to be filled. The results from CastView using old algorithm are shown in 

Fig. 5.11 and Fig. 5.12 while the results using new algorithm are shown in Fig. 5.13 and 

6-14. In the old results, the second half starts to be filled before the center of first half is 

filled, which is not similar to that of MagmaSoft. The results using new algorithm has 

similar pattern with that of numerical simulation. The first finger is not filled until the 

second half of part is filled. The second finger is the last region to be filled.  

 

 

Section I-Figure 5.8: A part with two fingers at different sides  
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Section I-Figure 5.9: MagmaSoft result for finger part (courtesy of Mao).  
 
 

 

Section I-Figure 5.10: MagmaSoft result for finger part (courtesy of Mao). The 
second finger is the last region to be filled. 
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Section I-Figure 5.11: CastView result for finger part using old algorithm.  
 

 

Section I-Figure 5.12: CastView result for finger part using old algorithm. The 
second finger is not the last region to be filled.  
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Section I-Figure 5.13: CastView result for finger part using new algorithm.  
 
 
 

 

Section I-Figure 5.14: CastView result for finger part using new algorithm. The 
second finger is the last region to be filled. 
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5.4 Case 3: Transfer Case 

The third part for test is a relatively complex part with relatively thin wall. The 3D part 

geometry is shown in Fig. 5.15 and Fig. 5.16. The part is hollow with a number of very 

thin ribs while the part wall at bottom is thick, which may cause fill related problems in 

production. The results from MagmaSoft are shown in Fig. 5.17 ~ 5.19 (kindly provided 

by Dr. Walter Smith, DCD Technology Inc.). The results from CastView using old 

algorithm are shown in Fig. 5.20 ~ 5.22 while the results using new algorithm are shown 

in Fig. 5.23 ~ 5.25. It can be seen that the results using old algorithm does not have 

similar fill pattern with that from numerical simulation in that the last region to be filled 

is not the same. However, the results using new algorithm have similar pattern to those of 

MagmaSoft. The flow fills central region and ribs first then the upper left region is the 

last one to be filled. These results for the complex part show again the improvement for 

geometric reasoning algorithm for fill pattern.  
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Section I-Figure 5.15: A very complex transfer case part for test. There are many 
thin ribs at around body surface. 
 

 

Section I-Figure 5.16: Another view of the transfer case part for test. The part is 
hallow and the wall thickness is uneven.  
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Section I-Figure 5.17: Result from MagmaSoft (courtesy of Dr. Smith)  
 

 
Section I-Figure 5.18: Result from MagmaSoft (courtesy of Dr. Smith)  
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Section I-Figure 5.19: Result from MagmaSoft (courtesy of Dr. Smith)  
 

 

Section I-Figure 5.20: Result of transfer case from CastView using old algorithm. 
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Section I-Figure 5.21: Result of transfer case from CastView using old algorithm.  
 

 

Section I-Figure 5.22: Result of transfer case from CastView using old algorithm. 
 



 126

 

Section I-Figure 5.23: Result of transfer case from CastView using new algorithm. 
 

 

Section I-Figure 5.24: Result of transfer case from CastView using new algorithm.  
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Section I-Figure 5.25: Result of transfer case from CastView using new algorithm. 

5.5 Water Analog Study for Verification 

Since it is extremely difficult to run a real experiment on die casting process to obtain fill 

pattern result, water analog study is an important way to verify the fill pattern algorithm. 

Though the water analog model can not represent the heat transfer and solidification 

effects, it still has good similarity with the flow behavior of liquid metal in die cavity. 

The water analog model results in this section are from Rebello’s dissertation (Rebello 

1997). Two cases of experiment with different cavity were run. One has an insert in the 

cavity and the other does not. The gate, cavity, insert and the assembly way are showed 

in Fig. 5.26. The dimensions of gate and runner are shown in Fig. 5.27 and those of 

cavity and insert are shown in Fig. 5.28.  
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CAD model was built using Unigraphics NX and the STL model was exported for 

CastView analysis. Rendering of the two cavities (with and without insert) are shown in 

Fig. 5.29.  

 

 

 

Section I-Figure 5.26: Illustration of the gate, cavity, insert and assembly way of 
water analog model. (Rebello, 1997) 
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Section I-Figure 5.27: Dimensions of gate and runner (in inch). Upper: top view; 
Lower: side view. (Rebello, 1997) 
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Section I-Figure 5.28: Dimensions of cavity, die and insert in inch. The depth is 1 
inch. Upper: cavity and die; Lower: insert. (Rebello, 1997) 
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Section I-Figure 5.29: Two cavities for water analog experiment and fill pattern 
reasoning. Upper: with insert; Lower: without insert. 

The experiment results and CastView results using old algorithm and new algorithm for 

the case without insert are listed in Fig. 5.30, (Left: old algorithm; Middle: water analog 

result from Rebello’s dissertation; Right: new algorithm). It can be seen from the photo 
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taken from the experiment that the flow fills the central region first. Some flow is 

touching the end wall and starts to fill the end region with the region close to end wall 

unfilled. Both old result and new result follow this pattern but the new result is more 

similar to the experiment result. For example, the experiment result shows that the region 

close to gate is completely filled at this stage. The new result matches this pattern but the 

old result does not. The region close to gate has not been filled completely yet in old 

result. In addition, both experiment result and new result show that the small corner at the 

end has not been filled at this stage. However, the old result shows this corner has been 

filled, which is not correct. 

The similar comparison is made on the case with insert, which is listed in Fig. 5.31. The 

fill patterns of three results are similar. Flow hits the 45o angle wall then changes the 

direction. The small tip region is the last region to be filled. Comparing the old result and 

the new result, a slight difference is that in the new result, the flow fills the central region 

directly but in the old result, the flow fills the central region and the edge region at the 

same time. In addition, the flow lines in the old result are dispersed. Judging from the 

experiment result, the new result is slightly better than the old result.  
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Section I-Figure 5.30: Experiment result and CastView results using old algorithm 
and new algorithm for cavity without insert. Left: old result; Middle: experiment 
result (Rebello, 1997); Right: new result. 

 

  

 
Section I-Figure 5.31: Experiment result and CastView results using old algorithm 
and new algorithm for cavity with insert. Left: old result; Middle: experiment result 
(Rebello, 1997); Right: new result. 
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5.6 Conclusions 

1) Some cases are chosen for test and verification for the new fill pattern algorithm. 

These include three cases compared with numerical simulation results and two 

cases compared with water analog results.  

2) The three parts compared to MagmaSoft simulation include a simple part, a 

medium complex part and a very complex part. The run time for a reasoning 

analysis is minutes and the run time for a numerical simulation is hours. 

3)  The results from new algorithm and results from numerical simulation have good 

agreement but there is some difference for the results from old algorithm. This 

shows the improvement of the new algorithm. 

4) In the two cases compared to water analog results, one has an insert in the cavity 

and the other one does not. The three results from old algorithm, new algorithm 

and experiment are similar. However, the results from new algorithm are slightly 

better than those from old algorithm. The comparison shows the improvement of 

the new algorithm again.  
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6. CONCLUSIONS AND FUTURE WORK 

Die casting is an important net shape manufacturing process. In this process, liquid metal 

is injected at high pressure and high speed into a metal die cavity, with subsequent 

solidification into useful shapes. The applications of die castings have increased 

significantly in the recent years, especially in the automobile, aerospace, electronics and 

medical apparatus industries. The die casting industry is now in fast development and 

will see its further expansion in the future.  

The thermal characteristics and fill pattern are usually of concern to die casters. The 

temperature distributions of die and part are closely related to stress/strain, distortion, 

casting quality, die life, etc. In a good process design, the die temperature distribution 

should be as even as possible to reduce stress/strain and the part ejection temperature 

should be below the melting point of casting alloy for safe ejection. It is very desirable to 

have temperature pattern of die and ejection temperature of part when the process reaches 

the quasi steady state because they help the cooling/heating design and cycle design.  

The typical way to obtain the thermal profile of die/part is numerical simulation for 

dynamic temperature change. This technique usually sets up equation system based on 

dynamic heat transfer and solidification then solves the equation system for the 

temperature change. However, this is very time consuming since to reach the quasi steady 

state, literally hundreds of cycles of simulation are needed. In addition, the information 

that numerical simulation provides is beyond that needed for cycle and die 
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cooling/heating design. Thus, numerical simulation is not suitable in the conceptual 

design stage.  

Equilibrium temperature solution may be better than dynamic temperature solution for 

cycle and die cooling/heating design. The equilibrium temperature is defined as the time 

average temperature over a cycle of die and the ejection temperature of part after the 

process reaches the quasi steady state. To obtain the solution, the overall heat balance 

over the whole cycle is considered. The heat transfer concepts in real steady state are 

introduced into the quasi steady stage of die casting process. Since it does not solve the 

heat transfer in the cycles before the process reaches quasi steady state, this method is 

very quick and supports the interactive process design. This is particularly important in 

early design stage because there may be many alternative designs and the engineer wants 

to explore all designs using a quick computer tool.  

Another concern of die casting engineers is the fill pattern of liquid metal in die cavity. 

The fill pattern also plays a very important role for casting quality. If the flow is not 

controlled well, it would cause many flow-related defects. One of the common defects is 

gas porosity, which usually happens at the last region to be filled. Thus, it is very 

important to evaluate the fill pattern of a process before the production.  

Currently, the prevailing method to obtain the fill pattern is numerical simulation. This 

technique utilizes principles of heat transfer, solidification and fluid mechanics and is 

usually based on Finite Element Method (FEM), Finite Difference Method (FDM) or 

Boundary Element Method (BEM). Due to the complexity of the equation system to be 
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solved, numerical simulation is very time consuming. The computation time for a case 

using numerical simulation is usually hours or days. This is not suitable for quickly 

evaluating designs and limits the utility in the early stages of development.  

An alternative method to obtain fill pattern is qualitative analysis which is based on 

geometric reasoning. In this method, the flow behavior is calculated using the cavity 

geometric information. The flow vector is recomputed when the flow hits obstruction. 

The mass conservation is considered within neighborhood. Some assumptions and 

simplifications are made to reduce the computation. Though the accuracy is not as high 

as numerical simulation, this method provides a quick and efficient way to predict the fill 

pattern in cavity.  

The Ohio State University developed an algorithm based on geometric reasoning 

previously. This algorithm has proved a simple but efficient way for fill pattern. 

However, there are some shortcomings in this algorithm and occasionally the analysis 

results are not correct. Thus it is very necessary to correct the problems and improve the 

old algorithm.  

In this research, an efficient algorithm to compute equilibrium temperature of die and 

ejection temperature of part has been developed. This algorithm was implemented in the 

program CastView based on Finite Difference Method (FDM). Compared to days of run 

time for numerical simulation for dynamic temperature solution, the typical run time 

using this algorithm for equilibrium temperature is only a few minutes. The results from 
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this algorithm have been compared to those from numerical simulation. Both results have 

good agreement, which indicate the validity and efficiency of the algorithm. 

The old fill pattern algorithm for die casting process based on geometric reasoning has 

been redesigned. Many shortcomings in the old algorithm were fixed and improved. The 

new algorithm includes some other considerations which affect the flow behavior. The 

results produced by the new algorithm have been compared to those from numerical 

simulation and water analog model. The comparison clearly shows the improvement of 

the new algorithm.  

The specific contributions made by this research are: 

• Developed a mathematical algorithm to compute the equilibrium temperature of 

die and ejection temperature of part. The heat transfer concepts in steady state are 

introduced to quasi steady state to calculate the heat balance over a cycle.  

• Special attention was paid to the calculation of heat released from the part. 

Several models were tried but finally the combined asymptotic and surrogate 

model was chosen.  

• Composite heat transfer at interface, average temperature at different stages, 

cooling line effect, spray effect and die splitting at parting surface were addressed. 

Computational efficiency was considered by applying some special methods to 

reduce the computation. 

• Implemented the algorithm in the program CastView, providing a quick tool to 

evaluate the cycle and die cooling/heating design. Compared to days of run time 
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using numerical simulation for dynamic solution, the run time of CastView for 

equilibrium temperature is only a few minutes. 

• Developed a method to transfer date between FDM model and FEM model, thus 

related the equilibrium temperature data with numerical simulation temperature 

data. 

• Redesigned the old fill pattern algorithm for die casting processes. Flow speed, 

flow resistance, flow potential and influence within neighboring flows were 

included. The method to compute new vector when flow hits an obstruction and 

the searching way for available vectors were improved.  

• Implemented the new algorithm for fill pattern in the program CastView, 

providing a quick and efficient tool to evaluate fill pattern in cavity. The run time 

for a typical case on CastView is only ~10 minutes while that on numerical 

simulation packages is hours or days. 

• Relating the fill pattern results from geometric reasoning with numerical 

simulation results. 

• Relating the fill pattern results from geometric reasoning with water analog 

studies.  

• Determined the dominant terms on flow behavior for die casting process, gravity 

casting process and squeeze casting process from Navier-Stokes equations.  

• Developed fill pattern algorithms for gravity casting process and squeeze casting 

process by modifying the algorithm for die casting process. 
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• Implemented the algorithms in the program CastView. The typical run time is 

only a few minutes. 

• Relating the fill pattern results of gravity casting and squeeze casting using 

geometric reasoning with the information in literature resource.  

The tool for equilibrium temperature can quickly compute the overall temperature 

distribution of die and ejection temperature of part. This helps the user evaluate the effect 

of cooling and heating and verify the cycle design. Due to the efficiency of this tool, the 

user can explore numerous alternative designs, which is very difficult for numerical 

simulation packages.   

The tool for fill pattern analysis provides an alternative means other than numerical 

simulation. The advantage of geometric reasoning is the computational efficiency. It can 

produce a fill pattern prediction in a few minutes. This is particularly useful in the early 

design stage. Compared with the old fill pattern algorithm, the new algorithm improves 

the calculation and considers more factors. The analysis results are more accurate but the 

computation time is only increased slightly.  

Based on the analysis of Navier-Stokes equations and geometric reasoning technique, the 

fill pattern algorithms for gravity casting and squeeze casting can provide quick 

evaluation for fill patterns of these two processes.  

The limitation of the analysis for equilibrium temperature is that we applied the steady 

state on the quasi steady state. This is to simplify the computation but also introduces 

some problems. The heat transfer is computed based on the time average temperature. 
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However, the actual heat transfer happens on the dynamic changing temperature. The 

discussion in Section 2.8 makes some remedy but it does not eliminate the problem.  

The limitation for fill pattern analysis is that this method is solely based on geometric 

reasoning thus there is no or only little physics behind it. There is no strict consideration 

of mass conservation, momentum conservation and energy conservation. There is no 

calculation for heat transfer and solidification during flow analysis. This lack has 

inevitable effect on the result accuracy.  

Extensions to the research on computing equilibrium temperature include the 

improvement of the current method to calculate heat released from part and better way to 

address the average temperatures in different cycle stages. This would improve the 

accuracy of the calculation, especially for the ejection temperature of the part.  

Future work for fill pattern reasoning includes better definitions for flow resistance and 

flow potential. For example, flow resistance calculation should address the threshold of 

wall thickness which can affect the resistance. In the example of Fig. 5.4, if the thickness 

of C is large enough, it would not have resistance for the flow. Future work also includes 

the development of functions to define gate, biscuit and runner system. The fill pattern 

analysis will be performed on the whole cavity including part, gate, runner system and 

biscuit.  
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SECTION II: 

GRAPHICAL USER INTERFACE FOR COOLING LINE 
FUNCTIONS AND SURFACE RENDERING4 

                                                 
4 Based on the work of Xiaorui Chen , “Graphical User Interface For Cooling Line Functions And Surface 
Rendering,” MS Thesis, Mechanical Engineering, The Ohio State University, 2003. 
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1. INTRODUCTION 

Die casting is a precision, high volume production process in which molten metal is 

forced, at high pressure and velocity, into a reusable die that has a cavity in the desired 

shape of the casting part. Upon solidification, facilitated by the cooling system in which 

the coolant flows through the die sections, die clamping is relaxed and the casting part is 

ejected.  

Because of its capability to produce parts with thin walled, complex geometry, close 

tolerances and high production rates, die casting has been applied in many industries, 

especially in the automobile industry. However, die casting is such a complex process 

involving many factors, including parting line location, cooling system design, gate and 

runner design, vent location, and die layout design as well as part design, that die casting 

is unnecessarily expensive and the scrap rate is often high because of its incompatibility 

with the part design. 

To meet the high demand of today’s industry in terms of short time-to-market, high 

quality and low cost, Concurrent Engineering (CE) has emerged as a new design 

philosophy. In Concurrent Engineering, both the actual and simulated processes of 

designing and developing a product are performed simultaneously. All aspects, including 

final cost, manufacturability, safety, packaging, and recyclability, of a product are 

considered concurrently, with the design modified as necessary to make sure that the 

product is useful at all stages of its lifecycle. The practice of considering manufacturing 

needs at design time is known as Design For Manufacturing (DFM).  
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DFM is one of the most important aspects of CE. The primary objective of DFM is to 

produce a design at a competitive cost by improving its manufacturability without 

affecting its functional and performance objectives. Problems that might arise during 

manufacturing are anticipated and dealt with at design stage, where is the least expensive 

changes in a product’s lifecycle. 

Manufacturability evaluation plays an important role in DFM. Currently, two types of 

manufacturability evaluation techniques may be used to assist in the design of quality die 

casting parts. The first one is knowledge-based system that is limited in scope since they 

cannot reliably handle the range of complex part geometries found in die casting. The 

second one is based on finite element, finite difference, or boundary element method. 

These tools need very long run time, sometimes even days. Furthermore, an 

understanding of the assumptions behind the model is critical to correctly interpret the 

results. 

To remedy the above problems, Lu and Miller proposed a qualitative reasoning approach 

based on a volumetric part representation. In contrast to assessment using conventional 

tools, this approach provides a more consistent and robust evaluation of the part 

geometry. It identifies the underlying geometric characteristics, which actually affect part 

quality or increase manufacturing difficulties, using volume-based geometric reasoning. 

The result can be easily interpreted by designers via volume visualization techniques. 

By using this approach, a platform-independent die-castability evaluation tool, CastView, 

has been developed. It can be used by designers with little or no experience with process 
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simulation tools, quickly answer die-castability questions at the early design stage, and be 

easily integrated with virtually any CAD system. 

1.1  Die Casting Dies 

Die casting dies are made of alloy tool steels in at least two sections, called cover die half 

and ejector die half. The two halves separate at the parting surface, to allow for the 

removal of the casting part. The cover die half is mounted on the side toward the molten 

metal injection system, while the ejector die half is attached on the moveable platen of 

the machine.  

The cover die half usually contains the sprue or shot hole through which molten metal 

enters the die. The ejector half is designed to contain the ejector mechanism and, in most 

cases, the runners (passage ways) and gates (inlets) that route molten metal to the cavity 

(or cavities) of the die. The pair of opposite directions along which the two die halves 

separate are the die opening directions. 

Die cores, either fixed or movable, may be placed in either die half. These allow holes to 

be cast in various directions. Various inserts may be pre-positioned in the dies to become 

integral casting features. The dies also have internal cooling conduits through which 

liquid is circulated. 

The die cavity into which the casting part is formed is machined into both halves of the 

die block or into inserts that are secured in the die blocks. After the metal solidifies and 

the die opens, ejector pins push the casting from the ejector die half. Before closing for 



 150

the next injection cycle, the dies are subjected to an air blast to be cleaned, and then given 

a lubricating spray.  

1.4 Research Objective 

Figure 1.1 shows the current integrated system of CAD and CastView. The link between 

a CAD system and CastView is the STL file, which is generated by the CAD system and 

imported into CastView. Upon an analysis request, the voxel model is created from the 

STL model and the analysis is then performed based on the voxel model [16]. According 

to the analysis result, the designers may go back to modify the original design until the 

desirable result is obtained. 

 

 

Section II-Figure 1.1: The integrated system of CAD and CastView 
 

One goal of this research is to design the Graphical User Interface for the definition of the 

die configuration and the cooling lines, and implement related functions. Die 

configuration and cooling line locations play an important role in the temperature 

distribution in the die casting dies and part. Incorrect die configuration and cooling lines 
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locations may result in problems related with thermal distribution and filling pattern, such 

as cold shuts and non-uniform shrinkage. 

One task of the thermal analysis is to assist the designers in specifying die configuration 

and cooling line placements. Since CastView is an interactive system, the die 

configuration and cooling lines can be designed on the STL model, and may be modified 

if the results of the thermal analysis are undesirable. Thus, the problem that may arise in 

manufacturing process is eliminated at the design stage, the time-to-market and the cost 

are greatly reduced, and the product quality is significantly improved. 

Another goal in this research is to map the wall thickness obtained during the thin section 

analysis back to the part surface so that a comparison of all the wall thickness values may 

be performed, and wall thickness data output to the quantitative evaluation system. 
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2. RESEARCH APPROACH 

2.1 System Structure 

The system structure is shown in Figure 2.1. There are four main modules contained in 

the system: model building, view module, die configuration module, and cooling line 

sketching module.  

The model of the part is built right after the STL file is imported. Once it is displayed on 

the screen, users can work with it interactively, such as switching display modes, 

rotation, translation, and zoom. 

Before cooling lines are constructed, the die configuration must be defined. Die 

configuration includes information about die opening direction, die orientation, die box, 

and insert box. In CastView, the die box refers to the die shoe, the insert box is actually 

the die in which the casting is formed, and the die opening direction points toward the 

cover side of the die while the die orientation can be a direction pointing to the operator 

or upward. The die configuration is calculated using part information and the user input 

information, and can be saved in the die configuration file.  
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Section II-Figure 2.1: The System Structure 
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After the die configuration is defined, users can draw or modify the cooling lines using 

three methods: directly input coordinates of the cooling line nodes, orthogonal sketch and 

free sketch. Once the cooling lines are finished, they can be saved in the cooling line file. 

The die configuration file and the cooling line file are used as an input for the thermal 

analysis by the system. 

2.1.1 Model Building 

The model is built using the information from the imported STL file. Then the rendering 

algorithm is applied to display the model on the screen. In CastView, the rendering is 

implemented using OpenGL. 

2.1.2 View Module 

After the model is displayed on the screen, users can manipulate it interactively. The 

following functions are available. 

• Display the coordinate axes 

• Display the STL model 

• Display the die box and the insert box 

• Display the die opening direction and the die orientation vectors 

• Display the parting surface 

• Display the specified cooling line(s) and/or sketch planes 

• Implement view operations such as rotation, translation, and zoom. 

• Switch between different display modes 
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2.1.3 Die Configuration Module 

This module provides the following functions to help the user to define or modify the die 

configuration: die opening direction, die orientation, die box, and insert box. 

• Enable the user to define or modify the die opening direction 

• Enable the user to define or modify the die orientation 

• Enable the user to define or modify the die box and the insert box 

Die configuration gives a constraint for the cooling lines. That is, the cooling lines must 

lie inside the die box. 

2.1.4 Cooling Line Sketching Module 

The following functions are implemented in the cooling line sketching module to help the 

user to define the cooling line placements and properties. 

• Enable the user to sketch cooling lines using three sketching methods 

• Allows the user to define the properties for the specified cooling line 

• Allows the user to modify a previously specified cooling line 

• Allows the user to delete the specified cooling line 

• Allows the user to save cooling line information in the cooling line file 

• Allows the uses to load the cooling line file 

Cooling lines are forced to fall inside the die box. Cooling lines and die configuration 

data can be written into their corresponding files, which provide data for thermal 

analysis. 
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2.2 STL Model vs. Voxel Model 

The STL (“Stereo Lithography”) model approximates the surfaces of a solid model with a 

set of triangles. The surface is tessellated or broken down logically into a series of small 

triangles that are called facets, each of which is described by a normal and three points 

representing the vertices of the triangle.  

The .STL file format has become the Rapid Prototyping industry’s defacto standard data 

transmission. Almost all of today’s CAD systems are capable to produce a .STL file for a 

solid model, such as AutoCAD, ProE, SolidEdge, SolidWorks, Unigraphics, and so on. 

The .STL file is used as the original input to create the model that is analyzed by 

CastView. The STL model generated can be manipulated to rotate, zoom, translate, and 

even switch between different display modes, such as wire frame, no hidden line, and 

shaded mode. The components of the die casting tool, such as cooling lines, gates, 

overflows, etc, are all designed based on the STL model in CastView. 

Voxel-based representation is another way to represent solid objects. In voxel-based 

representation, the solid is decomposed into identical cells, which are called voxels 

(volume element), arranged in a fixed, regular grid. The most common cell type is the 

cube. The solid objects can then be encoded by a unique and unambiguous list of 

occupied cells, which mean that they are inside the solid objects. 

Since each voxel is represented by the coordinates of a single point, such as the centroid 

of that cell, and a specific spatial scanning order is imposed, it is easy to control the 

behavior of each voxel during reasoning. And since the voxels are identical, the 
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reasoning algorithms will not be dependent on the geometric complexity of the casting 

part. This is the greatest benefit of representing the complex casting part by a voxel 

model. 

During the thick and thin section analysis, the STL model is first transformed to the voxel 

model, and the data processing techniques, such as distance transformation, thinning, etc, 

are then be used to assist the die castability evaluation. Wall thickness is then mapped 

back to the voxel model surface after the thinning process. 

2.3 OpenGL 

OpenGL is a software interface to graphics hardware. It consists of about 120 different 

commands that allow the user to specify the objects and operations needed for producing 

interactive 3-dimensional applications. OpenGL is fully cross-platform and it is very easy 

to move applications from one platform to another. Today, OpenGL has become the most 

widely used 3D API in Win9x/NT/2k/XP systems for both professional and consumer 

graphics applications. 

By using OpenGL, CastView software implements the view and manipulation functions 

for both the STL model and the voxel model, including viewing in different display 

modes, translation, rotation and zoom. 

2.3.1 Displaying Geometric Primitives 

Using OpenGL, all kinds of objects are constructed from a small number of geometric 

primitive items, which are eventually described in terms of their vertices - coordinates 

that define the points themselves, the endpoints of line segments, or the corners of 
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polygons. Figure 2.2 shows examples of all the geometric primitives used in OpenGL. 

(v0, v1, v2, ... , vn-1) are described using OpenGL commands sequentially that are 

written between glBegin() and glEnd(), which represents the beginning and the end of 

drawing one kind of geometric primitives described in Figure 2.2. 

 

 

 

 

Section II-Figure 2.2: Geometric primitive types [20] 
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2.3.2 Pipeline of the Transformation 

The STL model is defined in object coordinate system in CastView. In order to view it on 

the screen, a series of computer operations are used for each vertex composing the STL 

model to convert the 3-dimensional object coordinates to screen coordinates on the 

screen. Figure 2.3 shows the stages of vertex transformation. 

 

 

 

Section II-Figure 2.3: Stages of vertex transformation [20] 
 

First, the modeling transformation matrix transforms the vertex from the object 

coordinate system to the world coordinate system. Then the viewing transformation 

matrix transforms the vertex from world space to eye space. The modeling and viewing 

transformations are combined to form the modelview matrix, which is applied to the 

incoming object coordinates to yield eye coordinates. The modelview matrix involves 

mainly translation, rotation and scaling, among which the rotation transformation can be 

expressed using concept of quaternion [22]. 
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A quaternion is defined using four floating point values ),,,( wzyx , and extends the 

concept of 3-dimensional rotation to 4-dimensional rotation. This avoids the problem of 

“gimbal-lock”, which may arise when using the Euler angles for a rotation, and allows for 

the implementation of smooth and continuous rotation. Quaternions allow for rotating an 

object through an arbitrary rotation axis and angle. 

A quaternion can be calculated from another quaternion, or be converted from a rotation 

matrix, a rotation axis and angle, spherical rotation angles, or Euler rotation angles; vice 

versa. We can also get the conjugate, the inverse, and the magnitude of a quaternion from 

its definition. The operations of normalization, multiplication, linear and cubic 

interpolation are defined for quaternions as well [11]. 

Second, the projection matrix that defines a viewing volume is applied to yield clip 

coordinates. Scenes outside the volume are discarded when the final scene is drawn on 

the screen. Then the perspective division is performed by dividing the homogenous 

coordinate values by w, to produce normalized device coordinates. 

Finally, the viewport transformation applies so that the normalized device coordinates are 

converted to window coordinates, which finally determine the object color of each pixel 

on the screen. Since all the transformations are performed on z coordinates as well, the z 

values of the window coordinates may be used for the visibility detection. 

2.3.3 Display Modes 

The objects can be viewed in different display modes – wire frame mode, no hidden line 

mode and shaded mode, using OpenGL. The wire frame mode enables the user to see 



 161

each primitive clearly and select the triangle vertices and edges correctly, while the no 

hidden line mode and shaded mode makes the objects more realistic. Figure 2.4 shows an 

object in wire frame mode, no hidden line mode and shaded mode respectively. 

2.3.4 Colors and Blending 

OpenGL keeps a current color (in RGBA mode) or a current color index (in color-index 

mode). Unless a more complicated coloring model, such as lighting or texture mapping, 

is used, each object is drawn using the current color (or color index). 

When blending is enabled, the alpha value, which represents the opacity, is used to 

combine the color value of the fragment being processed with that of the pixel already 

stored in the frame buffer. Blending occurs after the scene has been rasterized and 

converted to fragments, but just before the final pixels are drawn in the frame buffer. 

Without blending, each new fragment overwrites any existing color values in the frame 

buffer, as though the fragment is opaque, that is, the alpha value is 1.0. With blending, 

how much of the existing color value should be combined with the new fragment's value 

can be controlled. Thus, the alpha blending can be used to create a translucent fragment, 

one that lets some of the previously stored color value "show through." 
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Section II-Figure 2.4: An object shown in wire frame, no hidden line, and shaded 
model 
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2.4 Summary 

This chapter first explained the system structure, which includes four main modules: 

model building, view module, die configuration module, and cooling line sketching 

module. Each module has a specific function and can be combined with other modules.  

Then the STL model and the voxel model were discussed. The components of the die 

casting tool are designed by the user based on the STL model, while the analyses, 

including thick section analysis, thin section analysis, filling analysis, and the wall 

thickness analysis, are performed based on the voxel model. 

CastView software implements the view and manipulation functions for both the STL 

model and the voxel model using OpenGL, which has been a widely used software 

interface to graphics hardware. The geometric primitives, the pipeline of transformations, 

the display modes, colors and blending functions used by OpenGL were talked about in 

section 2.3. 

Since the model building module and the view module have been built in CastView, the 

die configuration module will be discussed in next chapter, which includes the die 

opening direction construction, the die orientation construction, the die box and the insert 

box specification. A machine coordinate system will be constructed during the definition 

of the die configuration. 
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3. DIE CONFIGURATION FUNCTIONS 

3.1 Defining Die Opening Direction 

Die Opening Direction is one of the important specifications of die design in near-net-

shape manufacturing. Current research shows that possible die opening directions can be 

derived directly from the geometric information of the part. Desirable die opening 

direction allows the part to be ejected from the die successfully. In CastView, the die 

opening direction points toward the cover side of the die. The direction of the vector 

determines which side of the parting surface the gate lies on.  

Users can define the die opening direction using four methods. 

1. Pick the normal of any polygon on the STL model surface to be the die 

opening direction 

2. Pick any two points on the STL model surface. The die opening direction goes 

from the second picked point to the first picked point. 

3. Pick a polygon edge on the STL model surface. The die opening direction is 

the edge direction, which goes from the rear vertex to the front vertex. 

4. Pick the opposite direction of the current die opening direction by flipping it 

using right mouse button clicking. 

Since the defining of the die opening direction involves picking the geometric entities 

(points, edges, and triangles) and picking polygon functions are used in the first three 
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methods, the reasoning pipeline for picking polygons is discussed here. It is achieved by 

using a reasoning algorithm provided by OpenGL. The input element of the pipeline is 

the user click on the screen. The output of the pipeline is the polygon index on the 

polygon list. The pipeline for picking polygons is illustrated in Figure 3.1. 

 

 

Section II-Figure 3.1: The pipeline of picking a polygon [23] 
 

3.1.1 Defining the Die Opening Direction by the Normal of a Polygon 

Since the normal of the polygon is built into the STL model when the STL file is 

imported, the normal can be retrieved right after the polygon is selected through the 
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method described in previous section. Defining the die opening direction by the normal 

of a polygon is the simplest way. Users just need to double click on the desired polygon 

using left mouse button. The latter result of the double click always replaces the previous 

result. 

3.1.2 Defining the Die Opening Direction by Two Points 

The die opening direction can be defined by two arbitrary points. In Castview, these 

points must be on the STL model surface. However, it is sufficient for the user to define 

an arbitrary die opening direction. Users can pick two points using left mouse button 

double click. Once the second point is selected, the die open direction is defined as a 

vector pointing from the second point to the first point. 

After the user picks a point on the screen, the corresponding polygon can be easily found 

by the method described in section 3.1, if there is any. Since we have had the object 

coordinates of each vertex of the polygon, and we can get the transformation matrix using 

OpenGL functions, we can calculate the screen coordinates of each vertex of the selected 

polygon, from which the plane equation 0=+++ DCzByAx  can be derived again in 

screen coordinates. As long as the picked point is on this plane, its screen coordinate z  

can be easily achieved with its screen coordinates ( x , y ) already known. Then the picked 

point is transformed from screen coordinates to object coordinates using the inverse 

transformation matrix mentioned above. Figure 3.2 illustrates how to achieve the object 

coordinates of the picked points. 
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Section II-Figure 3.2: Pick a point on the STL model 
 

If the user wants to correct the die opening direction by this method, the only thing 

required is to select two points again to construct the new die opening direction. The 

previous process is repeated. 

3.1.3 Defining the Die Opening Direction by the Edge of a Polygon 

After the user double clicks on the screen, the corresponding polygon is selected using 

the method discussed in section 3.1. Then the object coordinates of the picked point are 

calculated using the same method as described in section 3.1.2. With the object 

coordinates of the picked point and each vertex of the polygon known, the distance 

between the picked point and the edge line is calculated. The smallest distance is selected 

and the corresponding edge line is copied as the die opening direction. The die opening 
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direction points from the rear point to the front point of the edge line, in the saved 

sequence. The later result will replace the previous result if the user picks a new point. 

In order to get the desired edge of the polygon as the die opening direction, the user is 

recommended to use the wire frame or no hidden line display mode instead of the shaded 

display mode. 

3.1.4 Reversing the Die Opening Direction 

After the die opening direction is defined by one of the first three methods, users can flip 

it to the opposite direction by right mouse click. This provides the user a convenient way 

to get an opposite die opening direction quickly. 

3.2 Defining the Die Orientation 

Only the die opening direction is not enough to determine the placement of the die box 

and the insert box relative to the casting. The die orientation provides the other 

information to place the die box and the insert box.  

Since the surfaces of the die box and the insert box are perpendicular or parallel to either 

the die opening direction vector or the die orientation vector, a machine coordinate 

system is defined using the die opening direction vector as the z machine axis vector and 

the die orientation vector as the x or y machine axis vector. Then the right hand rule is 

applied to get the other machine axis vector. The coordinates of the casting part center 

point are kept the same in both the machine coordinate system and the object coordinate 

system, which is constructed when the STL model is built. In this way, the surfaces of the 

die box and the insert box are perpendicular to one of the machine axes, and the user can 
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have a clear view about the relative position of the die box and the insert box and the 

casting part. Moreover, it is much easier for the user to place the cooling lines using the 

machine coordinate system. The following thermal analysis, which needs to separate part 

voxels from die voxels, also becomes much easier in the machine coordinate system.  

 

 

Section II-Figure 3.3: Machine coordinate system construction (NADCA website) 

Figure 3.3 illustrates how the machine coordinate system is constructed. The z machine 

axis is in the same direction as the die opening direction, which points toward the cover 

die from the ejector die. The y machine axis points upwards and the x machine axis points 

inwards, which are defined by the die orientation. The user can define either x or y 

machine axis direction to construct the machine axis system. The die orientation vector 

can be defined using five methods. 

1) Pick the normal of any polygon on the STL model surface to be the die 

orientation vector 

Z 

Y 
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2) Pick any two points on the STL model surface. The die orientation vector goes 

from the second picked point to the first picked point. 

3) Pick an edge of a polygon on the STL model. The die orientation vector is the 

edge direction, which goes from the rear vertex to the front vertex. 

4) Pick any point on the datum plane, which is perpendicular to the die opening 

direction and goes through the casting part center point. The die orientation vector 

points from the casting center to the picked point on the datum plane. 

5) Pick the opposite direction of the current die orientation vector by flipping it 

using right mouse button clicking. 

3.2.1 Defining the Die Orientation by the Normal of a Polygon 

See section 3.1.1. 

3.2.2 Defining the Die Orientation by Two Points 

See section 3.1.2. 

3.2.3 Defining the Die Orientation by the Edge of a Polygon 

See section 3.1.3. 

3.2.4 Defining the Die Orientation by Point on the Datum Plane 

The Datum Plane is constructed by the die opening direction, which is the z machine axis 

vector, and the casting part center point. The datum plane equation is described as: 

0=+++ DCzByAx  
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 where (A,B,C) is the normal vector to the plane, that is, the die opening direction. 

)( 000 CzByAxD ++−=  

 where )( 0,0,0 zyx  is the casting part center point. 

After the datum plane is established, the user can pick any point on the datum plane. The 

picked point is in 2D screen coordinates and can be transformed to 3D object coordinates 

using the same method described in section 3.1.2. 

The die orientation vector points from the casting center point to the picked point. If the 

user picks another point on the datum plane, the die orientation vector will point from the 

casting part center point to the newly picked point. The previous result is replaced with 

the new one.  

3.2.5 Reversing the Die Orientation 

See section 3.1.4. 

3.3 Transformation Matrix to Machine Coordinate System 

The machine coordinate system is constructed once the die opening direction and the die 

orientation are defined, as is described in the previous section. Since the information of 

the STL model is stored in object coordinates, the transformation matrix is needed to 

transform the information from the object coordinates to the machine coordinates when 

the calculations are to be done in the machine coordinate system. 

The OpenGL convention is used here to get the transformation matrix between different 

coordinate systems, that is, the coordinate system frame is transformed instead of the 
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object. In CastView, the machine coordinate system is transformed to coincide with the 

object coordinate system while the coordinates of the casting part center point are 

unchanged. This process involves rotation and translation.  

Since the coordinates of the casting part center point are unchanged, the rotation must be 

around the casting part center point.  Noticing that the rotation in OpenGL is around the 

coordinate system origin, the coordinate system origin must be translated to the casting 

part center point first. After the rotation, the coordinate system origin is translated back to 

its original position. 

First, the machine coordinate system is translated so that machine coordinate system 

origin coincides with the casting part center point. The translation matrix is: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
0001

1 z
y
x

M , 

where )0,0,0( zyx  are the coordinates of the casting part center point. 

Second, the machine coordinate system is rotated twice so that its orientation is the same 

as that of the object coordinate system. This process is illustrated in Figure 3.4. 
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Section II-Figure 3.4: Transform the machine coordinate system to object 
coordinate system 
 

The first rotation is made to map the x machine axis onto the x object coordinate axis. An 

intermediate coordinate system, whose x intermediate axis is the same direction as the 

object coordinate system, is generated after the first rotation. The first rotation matrix is 

M2. The second rotation is made to map the z intermediate axis onto the z object 

coordinate axis. The second rotation matrix is M3. 

The rotation matrix can be generated using the concept of quaternion, which is described 

in section 2.3.2, to map one unit vector Vd onto another unit vector Vz. There are two 

elements for a quaternion structure: rotation axis and rotation angle, which is shown in 

Figure 3.5.  
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Section II-Figure 3.5: Mapping a vector Vd onto another vector Vz 
 

The rotation axis Vaxis is calculated by taking the cross product between the unit vectors, 

Vd and Vz. That is, 

VzVdVaxis ×=  

The rotation angle Vangle is calculated by taking the dot product between Vd and Vz. 

That is, 

)(cos 1 VzVdVangle •= −  

From section 2.3.2, we know that the quaternion Q(X, Y, Z, W) can be calculated from 

(Vaxis, Vangle) and a rotation matrix can then be converted from the quaternion Q. 

What is noticeable is that the cross product returns (0,0,0) if the unit vector Vd and Vz are 

collinear. In our problem, this will occur if the z intermediate axis is (0,0,1) or (0,0,-1), or 

the x machine axis is (1,0,0) or (-1,0,0). When the z intermediate axis is (0,0,1) or the x 
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machine axis is (1,0,0), we may set an identity matrix to the rotation matrix M  since 

they have already aligned with the z or x object coordinate axis. If the z intermediate axis 

is (0,0,-1), we simply set the rotation axis as (1,0,0) and the rotation angle as 180º.If the 

x machine axis is (0,0,-1), we set the rotation axis as (0,0,1) and the rotation angle as 

180º. 

After the rotation, the machine coordinate system is translated back to its machine 

coordinate system origin. The translation matrix is: 
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The total transformation matrix is described as: 

4321 *** MMMMM =  

If an arbitrary point on the STL model is ),,( zyx  before the transformation, the point 

becomes )',','( zyx  after the transformation. Then the relationship between the points is: 
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After the transformation, the information of the STL model is under machine coordinate 

system, with the coordinates of casting part center point unchanged. 
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3.4 Defining the Die Box and the Insert Box 

Die box and insert box are the most important elements in the die casting process. The 

inserts must be held in position by the die when the metal is ejected. Die casting dies 

consist of at least two sections which meet at the parting surface. In CastView, the die 

box refers to the die shoe while the insert box is actually the die in which the casting is 

formed. 

In the system, die box and insert box are represented by two boxes. The edges of the 

boxes are parallel to one of the machine axes. Therefore, we can define the box by two 

points: the minimum point and the maximum point. The minimum point has the smallest 

coordinates and the maximum has the largest coordinates. 

3.4.1 Defining the Insert Box 

The size of the insert box is often decided relative to the casting part to be produced. The 

calculation of the size of the insert box is illustrated in Figure 3.6.  

The inner box is the bounding box of the casting part, which is stored in the part 

information. The outer box is the insert box. The minimum point and the maximum point 

of the insert box are calculated using the bounding box and the 6 offset values. All the 

edges of the boxes are parallel to one of the machine axes. 
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Section II-Figure 3.6: Calculate the size of the insert box 

3.4.2 Defining the Die Box 

The size of the die box is calculated relatively to the insert box. The calculation of the 

size of the die box is similar to that of the insert box, which is also shown in Figure 3.6. 

The inner box is the insert box, which has been achieved in the previous section. The 

outer box is the die box. The minimum point and the maximum point of the die box are 

calculated using the insert box and the 6 offset values. All the edges of the boxes are 

parallel to one of the machine axes. 

3.5 Modifying Die Configuration 

A die configuration can be modified at any time. Users can modify the die opening 

direction, the die orientation, and the size of the die box and the insert box by repeating 

the same operations as before. 
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But since the die configuration is defined step by step based on the sequence of defining 

the die opening direction first, then the die orientation, and finally the die box and the 

insert box, the user is required to finish the subsequent definition once they modify the 

die configuration. For example, if the die orientation is modified, the die box and the 

insert box must be defined again, while the die opening direction is not necessarily 

redefined. 

3.6 Saving and Loading Die Configuration 

Saving the die configuration includes saving the die opening direction, the die 

orientation, the die box and the insert box. The information is stored in files so that we 

can load the die configuration to review or modify. After the die configuration is loaded, 

the result should be the same as the die configuration just defined. Since the die 

configuration is defined in the order of defining the die opening direction first, then the 

die orientation, and finally the die box and the insert box, we save the die configuration in 

the same sequence in order to load the die configuration conveniently. The file format is 

shown in Appendix A. Figure 3.7 shows the approach of loading a die configuration. 
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Section II-Figure 3.7: Load die configuration 

3.7 Summary 

This chapter discussed the die configuration, including the die opening direction, the die 

orientation, the die box and the insert box. A machine coordinate system is constructed 

after the die opening direction and the die orientation are defined. With the machine 

coordinate system, it is very easy for the user to define the cooling lines, which will be 

discussed in Chapter 4. 
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4. COOLING LINE FUNCTIONS  

A cooling line is a tube or passage through which fluid is forced to circulate to cool a 

casting die. The cooling system is one of the subsystems related with the die casting 

process technology. The location of the cooling lines is a very important factor for an 

ideal die casting die. Cooling prevents the die from overheating which may cause 

premature die failure and helps the die to keep a uniform temperature distribution and 

shrinkage to obtain favorable surface finish and longer die life.  

However, cooling channel placement is often designed by guesswork or by past 

experience. It is very expensive and time consuming to modify the improperly placed 

cooling channels after the die has been built. In CastView, we enable the user to place the 

cooling lines before the thermal analysis. Redesign is also made possible interactively. 

The system provides three methods to build a cooling line: directly input coordinates of 

the cooling line nodes, orthogonal sketch and free sketch. The system also allows the user 

to modify a defined cooling line by changing its node coordinates, orthogonal editing or 

graphical editing. 

Since a cooling line is constrained inside the die box, a die box must be defined first 

before the cooling lines are constructed.  

4.1 Constructing New Cooling Lines 

A cooling line is composed of a sequence of points which are connected one by one in 

the sequence they have been picked. 



 181

4.1.1 Input Coordinates to Construct Cooling Lines 

This is the easiest way to construct a cooling line. In order to let the user to locate the 

nodes well, the relative origin (0,0,0) is defined. Its location is set at the corner of the die 

box with the minimum coordinates of all the points on the die box in the machine 

coordinate system. The relative coordinates of each node, which composes the cooling 

line, are displayed in a table. The user can add, insert, delete, or change the relative 

coordinates of the node. 

When the user confirms to construct the cooling line by clicking “OK” button on the 

dialog, the relative coordinates of the cooling line nodes are then translated to the 

machine coordinates.  
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where, ),,( 000 zyx is the machines coordinates of the relative origin, ),,( zyx  is 

the relative coordinates of each cooling line node, )',','( zyx  is the machine coordinates 

of each cooling line node, which is then transformed to the object coordinates using the 

inverse transformation matrix described in section 3.3 before it is saved in the cooling 

line structures. 

Since the cooling line must fall inside the die box, the system will detect the boundary 

and provide an alternative value(s) for the boundary value(s) if one or more node 

coordinates are beyond the die box. When one of the node coordinates is larger than the 

corresponding maximum value or smaller than the corresponding minimum value, which 
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are all in machine coordinates, that boundary value is said to be violated. The user can 

choose to agree with the provided value(s) or to input other valid value(s) by hand. 

4.1.2 Orthogonal Sketch 

With this method, the cooling line is placed parallel to an axis direction of the machine 

coordinate system. The entry point is first selected, which may lie on the die box surface 

or on an existing cooling line, by double clicking the left mouse button. Then the cooling 

line is driven to go forward at a set pace along one machine axis by pressing one of the 6 

function keys -- right arrow, left arrow, key <Home>, key <End>, up arrow, and down 

arrow, which represent 6 axis directions of the machine coordinate system: x+, x-, y+, y-, 

z+, and z-. 

4.1.2.1 Picking Entry Point 

The entry point can be selected at the beginning or in the middle of the cooling line 

construction. If the entry point is selected in the middle of the cooling line construction, 

the cooling line is to be constructed from the very beginning and the previous work on 

this cooling line is cancelled.  
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Section II-Figure 4.1: Pick entry point 
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The screen point is obtained by the user’s left mouse button double click. Then it is 

compared with each of the existing cooling line segments, of which the end points are 

transformed from object coordinates to 2D screen coordinates. If the picked screen point 

is on any existing cooling line segment on screen, the entry point is supposed to lie on 

that cooling line segment also in object space. Otherwise, the picked point is projected 

onto the closest die box surface to the user by certain transformations to obtain entry 

point if the projected point exists. Figure 4.1 illustrates the pipeline of this procedure. 

If the picked screen point does not happen to be on any existing cooling line segment, it 

will be projected onto the closest die box surface. First, we calculated the projected point 

on each of the 6 faces, which is represented by a polygon. The polygon is transformed 

from object coordinates to 3D screen coordinates. In this 3D screen coordinates, the 

plane equation of the polygon is established. And the picked point is fitted into this 

equation to get its z coordinate since its x and y coordinates are known from the pick 

operation. 

Then the picked point is transformed from the 3D screen coordinates back to the object 

coordinates to see if this point is beyond the die box. It will be excluded if so. Otherwise, 

the obtained point is treated as a projected point. If the number of projected points found 

is 0, the selection of the entry point fails. If not 0, we compare the points to get the closest 

one to the user using the z screen coordinate. Since the screen coordinate system we are 

using sets the z coordinate between –1.0 and 1.0, and the smaller the z coordinate, the 

closer the point is to the user, we select the projected point with the smallest z screen 

coordinate as the entry point. The idea is shown in Figure 4.2. 
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Section II-Figure 4.2: Pick entry point on die box surface 

4.1.2.2 Driving the Cooling Line Forward 

Once the entry point is selected, the function keys are used to drive the cooling line 

forward at a set pace. Figure 4.3 shows how this works. 
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Section II-Figure 4.3: Driving the cooling line forward 

When the user clicks one of the 6 function keys, the first thing to do is to judge if the 

driving direction has changed. If the driving direction changes, a new node will be added 

to the cooling line, and the coordinates of the new node are updated according to the set 

pace. Otherwise, only the coordinates of the last node are updated to show the node 

change. If this click happens right after the entry point is selected, it is treated the same 
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way as the direction is changed. Reversing the marching direction does not mean a 

change of the direction. Only the direction change is a turn, the principle of the changing 

direction is applied. 

After the coordinates of the node have been updated, it is necessary to see if its 

coordinates are beyond the die box. If the node goes outside the die box, a message box is 

popped up to warn the user and there are two options. If the user agrees to clip the 

cooling line by the die box boundary, the coordinate of the node will be replaced by the 

violated boundary value. Otherwise, the operation is undone to do nothing. 

The pace at which the node marches on may be set to any value using the edit box. It is 

the distance the node goes forward at one time’s key down. The initial value of the pace 

is set to be 1/20th of the maximum dimensional distance along the axes of the machine 

coordinate system. This feature can be used to precisely control the motion. 

4.1.3 Free Sketch 

This method requires that sketch planes, on which the cooling line nodes are picked by 

left mouse button double click, are drawn first. The size of the sketch planes is restricted 

by the die box since the cooling lines fall inside the die box. The cooling line nodes can 

then be picked on these sketch planes and connected to form a cooling line. 

There are two methods to construct a sketch plane. One is by offset to a polygon on the 

STL model. The other is by the plane normal and a point on the plane to be constructed. 

The sketch plane may or may not intersect with the STL model. If it does, the STL model 

is invisible when the cooling line nodes are to be picked; the intersection line loops are 
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calculated and displayed along with the sketch plane. Otherwise, the STL model is visible 

and displayed in a transparent mode. In both situations, the relationship between the 

sketch plane and the STL model is provided. 

4.1.3.1 Sketch Planes Defined by Offset to a Polygon Surface 

There are two elements in constructing the sketch plane: the plane normal and a point on 

the plane. The polygon normal can be achieved by the method described in section 3.1.1, 

and the picked point can be calculated using the same method used in section 3.1.2. By 

the offset to the polygon, the plane normal stays the same while the point on the plane is 

obtained by moving the picked point a distance of the offset along the direction of the 

plane normal. Thus the two elements for constructing the sketch plane are achieved.  
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 where, (x,y,z) is the picked point on the polygon, (u,v,w) is the normalized 

polygon normal, t is the offset value, and (x’,y’,z’) is a point on the sketch plane. 

The sketch plane equation is thus obtained in the same way as in section 3.2.4; the 

intersection line loop with the die box is then calculated to form the visible profile of the 

sketch plane, as will be discussed in section 4.1.3.3. If the sketch plane intersected with 

the STL model, the intersection line loops are also calculated in order to provide the user 

the relative position between them, as will be discussed in section 4.1.3.4. 
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When a large offset value is input such that the sketch plane does not intersect with the 

die box, a warning information that says “Offset value too large, plane out of die box!” 

prompts the user to input the offset value again. 

4.1.3.2 Sketch Planes Defined by Plane Normal plus a Location Point 

The plane normal is defined by one of the three methods: the normal of a polygon, two 

points on the STL model surface, and an edge of a polygon. Here, the direction of the 

normal does not matter for the sketch plane since the cooling line nodes lie on the plane. 

After the plane normal is obtained, a point which lies on either the STL model or one of 

the 6 die box faces will be selected. Selection of a point on the STL model has been 

discussed in section 3.1.2. A point may also lie on one of the 6 die box surfaces, as has 

been talked about in section 4.1.2.1 when an entry point of the cooling line is needed. 

The remaining work for constructing a sketch plane is the same as the method by using 

the offset to a polygon on the STL model surface. 

4.1.3.3 Intersection Line Loops of Sketch Planes with Die Box 

After the sketch plane equation is achieved, we need to deal with the visualization. Since 

a flat plane is boundless and infinitely large, it can’t be shown on the screen unless its 

size is limited. In CastView, we present the sketch plane with its four vertices. The size 

of the sketch plane is dependent on the size of the die box.  

First, we need to calculate the intersections of the sketch plane with the die box. 

Considering the die box is composed of 12 edges, we can calculate the intersection of the 
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sketch plane with each edge of the die box. There are 3 situations for the intersection 

between a line and a plane. The 3 situations are shown in Figure 4.4. 

 

 

Section II-Figure 4.4: Intersection(s) between a line and a plane 
 

The calculated intersections are then sorted so that they form a quadrangle. This 

quadrangle is shown on the screen to tell the users the relative location of the sketch 

plane with the die box. It also provides some information so that the users can easily 

locate the cooling lines. 

4.1.3.4 Intersection Line Loops of Sketch Planes with STL Model 

In CastView, the STL model is made up of numerous triangles, each of which has three 

edges. When the triangle has 0 or more than 1 intersection lines, it is parallel to or 

coplanar with the sketch plane and plays no role on the profile of the intersection line 

loops. So we only consider the triangles that have only 1 intersection line with the sketch 

plane. When all the intersection lines are calculated, they are connected to form the 

profile of the intersection line loop. Since the triangles are already sorted in a continuous 
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manner, the calculated intersection lines are naturally in the right order and no sort 

problem is involved here. 

Again, the triangles are composed of three edges each. There are also 3 possible 

intersection situations between each edge and the sketch plane. If there are only 2 

intersections totally between the triangle edges and the sketch plane, an intersection line 

is formed and added to the profile loops of the sketch plane. 

4.1.3.5 Picking Points on Sketch Planes 

The cooling line nodes can be picked anywhere on the sketch plane since the sketch plane 

is actually infinitely large. After the node is picked on the screen, its object coordinates 

can be obtained by calculation, as is discussed in Chapter 3 when two points are selected 

to construct the die opening direction. The picked screen point is then checked to see 

whether it happens to be on any existing cooling line segment on screen or not. If it does, 

the node is supposed to be on that cooling line segment also in the object space. 

When the cooling line transits from one sketch plane to another, a line that goes through 

the last picked node on the previous sketch plane and is perpendicular to the current 

sketch plane is displayed. The line has an intersection with current sketch plane. When 

the cooling line node is picked on the current sketch plane, it is also checked to see 

whether the picked node is near that special intersection or not. If it is, the intersection 

will be copied to the selected node. This situation is illustrated in Figure 4.5. 
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Section II-Figure 4.5: Picking nodes on another sketch plane 
 

When a node is outside the die box, the violated die box boundary value will replace the 

corresponding node coordinate. 

4.1.4 Cooling Line Properties 

Cooling lines have properties, such as the medium, diameter, flow rate, temperature and 

the heat transfer coefficient. Each cooling line may have different properties. The user 

can set the properties for the cooling line himself or use the default setting for the 

properties. The default setting can be changed, saved and loaded. 

The heat transfer coefficient may be calculated from other parameters or be set to a 

specific value by the user. When the coefficient is defined by the user, the coefficient can 

be arbitrary. The calculation of the heat transfer coefficient for convection with a moving 

fluid used by the system is expressed as following. 



 193

n

k
CpVD

D
kah ⎟

⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

µ
µ
ρ

8.0

 

where,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ
ρVD  = Reynolds number 

⎟
⎠
⎞

⎜
⎝
⎛

k
Cpµ  = Prandtl number 

D = diameter of the line 

k = the thermal conductivity of fluid 

h = the surface heat transfer coefficient 

a = constant, here is 0.023, suggested by author Colburn 

n = constant, here is 0.333, suggested by author Colburn 

V = velocity of fluid  

ρ  = Density of fluid 

µ  = Dynamic viscosity of the fluid  

Cp = Specific heat of fluid 

The parameters k, ρ , µ , and the Prandtl number can be obtained according to different 

temperatures and different mediums by using a lookup table. Then the Reynolds number 

is calculated with V and D known. Finally, the heat transfer coefficient is achieved using 

the above equation. 
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In order to satisfy the different custom of different users, the parameters are allowed to be 

input in different units, including English units and SI units, as is shown in table 4.1. 

 

Section II-Table 4-1: Parameters and units 
 

Parameter Units 

Diameter mm, cm, m, in., ft 

Flow rate m/s, ft/h, m^3/h, ft^3/h, ft^3/min, gal/min 

Temperature ,C°  F°  

Heat transfer coefficient W/m^2-K, BTU/hr-ft^2-F 

 

4.2 Modifying Cooling Lines 

During or after the construction of a cooling line, modification is allowed. There are three 

methods to modify the cooling lines. One method is by editing the node coordinates of 

the cooling line, as is achieved by using the same dialog that is used when the node 

coordinates are input to construct the cooling line. An unwanted node may be removed, 

the node coordinates may be changed, and a new node may be added or inserted to the 

cooling line. 

Another method is orthogonal method. Using this method, a node or a line segment can 

be moved or deleted. When the node or line is to be moved, the pace of the movement 

can be also set to any value by the user. If the node or the line will be moved outside the 
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die box, a warning message is given to ask whether the user wants to continue or not. If 

yes, the cooling line will be clipped by the die box boundary; otherwise, the operation is 

undone. The node or the line to be moved or deleted is rendered in another color to give 

the user a clear vision and understanding. If the node or the line is to be deleted, a 

confirmation dialog is popped up for the user to reconsider their choice. 

The above two methods can be used to modify a cooling line that is constructed by any 

method. The last method is the graphical editing. This method is exclusively used for 

modifying cooling lines that are constructed using sketch planes. The user may drag the 

desired node or line segment to a new position. A node or a line segment can also be 

deleted by left mouse double clicking. 

An undesired cooling line or sketch plane can be removed from the cooling line list or 

sketch plane list. And the properties of a cooling line may be modified at any time during 

or after its construction. 

4.3 Saving and Loading Cooling Lines 

Since the cooling line data may be retrieved later and it is needed for the thermal 

analysis, it is saved in a cooling line file. Different cooling line files can be used for the 

input of the thermal analysis. All the sketch planes and the cooling lines are saved in one 

cooling line file. For each cooling line, the number of the nodes, the properties of the 

cooling line, and the coordinates of the nodes are saved. 
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If there are less than 2 nodes for a cooling line, that cooling line will not be saved since 

this kind of cooling line is totally meaningless. The cooling line file format is shown in 

appendix B. 

4.4 Summary 

This chapter discussed the cooling line functions, including how to add a new cooling 

line, modify a specified cooling line, save and load cooling lines.  Since the cooling lines 

must fall inside the die box, a die configuration must have been defined when the cooling 

line functions are used. Both the die configuration and the cooling lines functions are 

based on the STL model. In next chapter, a voxel model will be used for the wall 

thickness analysis, which can let the user see the wall thickness distribution globally and 

serves as an input for the “castability assessment” system. 
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5. WALL THICKNESS MAPPING 

Geometric features of the STL model are important information needed in the castability 

assessment, which can help the user to measure the overall castability of a design and to 

evaluate the trade-offs inherent in configuring the die casting die. The geometric variable 

that has the largest impact on the mechanical performance of the casting part is wall 

thickness. In CastView, the half wall thickness is presented by thick section analysis and 

thin section analysis. The thicker or thinner section where the half wall thickness is larger 

or smaller than the threshold value is displayed, while the half wall thickness also can be 

shown on a slice.  

Since it is highly desirable to design the part at reasonably uniform wall thickness and 

avoid abrupt changes in wall thickness, it will be favorable to give the designers an 

overall view of the wall thickness throughout the part. In this task, the wall thickness is 

mapped onto the voxel model surface and the geometric features of different wall 

thickness are rendered in different colors. 

5.1 Pipeline of the Procedure 

The mapping of the wall thickness onto the voxel model surface is based on the result of 

the thin section analysis, during which the skeletons of the geometric features are 

extracted. Each skeleton has a half wall thickness value for that geometric feature. From 

the skeletons, the thickness values are expanded out until reaching the part surface so that 

the wall thickness can be displayed on the voxel model surface. The pipeline is shown in 
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Figure 5.1, 5.2, and 5.3 for mapping the wall thickness back from the STL model, thick 

section analysis result, and thin section analysis result respectively. 

 

 

 

Section II-Figure 5.1: Wall thickness mapping back from STL model 
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Section II-Figure 5.2: Wall thickness mapping back from thick section analysis 
result 
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Section II-Figure 5.3: Wall thickness mapping back from thin section analysis result 

5.2 Obtaining the Feature Skeletons 

The wall thickness mapping is based on the skeleton, which is obtained during the thin 

section analysis. The skeleton is attained by “onion peeling”, which is illustrated in 

Figure 5.4. The surface voxels are first peeled and numbered with 0, then the next layer 

to the surface voxels are peeled and numbered with 1, etc. The numbers assigned to the 

voxels are the number of layers, which are peeled off from the surface until the voxels are 

exposed. After the skeletons are found, all of the voxels are emptied so that we can fill 
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them with the right values when the wall thickness is mapped back. Each voxel is filled 

only once during the wall thickness mapping back process. 

 

 

 

Section II-Figure 5.4: Skeleton calculation by “onion peeling” 

5.3 Mapping Wall Thickness Back to the Voxel Model Surface 

During the thin section analysis, only the skeleton voxels have “thickness values” and 

only the skeleton thinner than the core value specified is rendered in green by the display 

when the slider is set to a corresponding value. Everything else will be rendered as gray. 
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After the wall thickness is mapped onto the voxel model surface, all the wall thickness is 

displayed in different colors with different values. 

Wall thickness mapping is started at the skeleton. First, the neighboring voxels with a 

value 1 less than the local skeleton are reset to the skeleton’s value. At the next step, all 

the neighbors two less than the original skeleton are reset, etc. With connectivity 

maintained, the surface voxels are reset values equal to the core values. Thus, different 

wall thickness is displayed on the screen using rendering mechanism. 

5.3.1 Selecting Favorable Algorithm for Wall Thickness Mapping 

The mapping back procedure is described in the previous section. But since the skeleton 

may be noisy from the thin section analysis, the results can be different when it is 

implemented. The noise, which is voxels not correctly classified as skeletons, usually 

exists as medium value skeletons near large value ones, based on experience.  

There are totally 8 candidate algorithms for the wall thickness mapping back, which can 

be classified into 2 groups – thickest first and thinnest first, according to whether thickest 

or thinnest skeleton is expanded first.  

For example, if the skeleton values are 4, 2, 1, the 8 algorithms are shown in Table 5.1 

and Table 5.2. 
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Section II-Table 5-1: Thickest first algorithms 
 

 

 

Section II-Table 5-2: Thinnest first algorithms 
 

 

 

When the expanded skeleton values go through all of the voxels, one sweep is finished. If 

there are more than one skeleton values expanded through one sweep, as in algorithms #1 

and #5, sequence problem may occur, which means that the result is different for the 

situation when the larger skeleton values are expanded before the smaller ones compared 

to the reverse situation The sequence problem is illustrated for algorithm #5 in Figure 5.5 

and Figure 5.6. 
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Section II-Figure 5.5: Mapping algorithm #5(1) 
 

In Figure 5.5, we map the skeleton values from left to right column by column, from top 

to bottom in a column. This means that the 1s are expanded to their neighbors first, so the 

voxels circled are filled with 1. 
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Section II-Figure 5.6: Mapping algorithm #5(2) 
 

In Figure 5.6, the skeleton values are mapped right to left column by column while still 

from top to bottom in a column. The circled voxels are filled with 2 in this way. So when 

more than one skeleton values are extended to their neighbors in one sweep, the sequence 

problem exists, which is the case in algorithms #1 and #5. So the algorithms #1 and #5 

are discarded. 

Another problem is noise. Since noise exists as medium value skeletons near large value 

ones, the neighbors of the large value skeletons will be occupied if they are mapped back 

to the voxel model surface first. When it is time for the medium value skeletons to 

expand their skeleton values to their neighbors, there will be no unoccupied neighbor 

voxels so the medium value skeletons can not be expanded. Figure 5.7 shows an example 
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of this case. After skeleton 4 is mapped back for 4 sweeps, skeleton 3, which is actually 

noise, can not grow out since all the neighbor voxels have been occupied. For the reason 

that the sequence problem hurt the result badly with high voxel resolution and severe 

noise, we select algorithm #4 to map back the wall thickness onto surface. 

 

Section II-Figure 5.7: Elimination of noise 

5.3.2 Wall Thickness Mapping Result 

In algorithm #4, 7 sweeps are made: 4, 4, 4, 4, 2, 2, 1. That is, the skeletons with value 4 

are mapped back for 4 sweeps, straightly to the voxel model surface. Then the skeletons 

with value 2 are mapped back for 2 sweeps. Finally the skeletons with value 1 are 

mapped for 1 sweep. The final result of the example is shown in Figure 5.8. 
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Section II-Figure 5.8: Wall thickness mapping back result 

Generally, if a skeleton value is m, it will take m sweeps for this skeleton value to be 

expanded to the model surface. So if the skeleton values are n, n-i, n-j, n-k, …, which are 

not necessarily continuous, the minimum number of sweeps that may be taken is n + (n-i) 

+ (n-j) + (n-k) + …. 

After taking the minimum number of sweeps, there may still be some voxels unfilled 

because there may be some error during the “onion peeling” algorithm. We may fill these 

voxels by taking another several sweeps using all the skeleton values instead of just one 

specific skeleton value. Until all the voxels are occupied, the process is done. 
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5.4 Wall Thickness Quantitative Display 

After each voxel of the STL model is filled with one skeleton value, the result is 

displayed on the voxel model surface. But this is not enough since the quantitative 

analysis has not been done. A histogram is drawn so that the wall thickness of each 

geometric feature can be compared quantitatively. The wall thickness variation can be fed 

to the evaluation procedures for the castability assessment. 

5.4.1 Average Wall Thickness  

The wall thickness has a large impact on the mechanical performance of the casting part, 

and maximum mechanical properties can be achieved in die castings when the wall 

thickness is in the range of .078 to .150 inches for alloys such as aluminum, zinc, and 

magnesium [13].  

The minimum wall thickness that can be cast without the risk of cold shut depends on 

configuration of the casting, position of the gate, metal flow in the die, and the projected 

area of the die cast part. 

Average wall thickness is usually used for the designers to decide whether the design is 

feasible for the casting part to be produced by the die casting process or not. The average 

wall thickness is calculated as the ratio of the volume to the surface area. 

AreaSurface
VolumeThicknessWallAverage

21
=  
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5.4.2 Wall Thickness Distribution 

The average wall thickness is not enough for a precise castability evaluation. Since we’ve 

got the wall thickness for each voxel of the STL model, a histogram is used to show the 

wall thickness distribution, which may be the input of the castability evaluation system. 

From the histogram, a more accurate average wall thickness and its deviation can also be 

calculated. The user can even tell if the wall thickness is uniform just from the 

appearance of the histogram. 

5.4.3 Wall Thickness Visual Option 

After the thin section analysis, the skeleton values are obtained. These values are actually 

the distances from the voxel model surface, as can be seen from the algorithm of “onion 

peeling”. According to the generic meaning of the wall thickness, its value should be 

twice of the value of the distance from the voxel model surface. In CastView, the user 

can select any mode according to their preference. Wall thickness option is set as the 

default setting. 

5.5 Saving the Wall Thickness Data 

After the analysis, the wall thickness data may be input into the evaluation system for the 

castability evaluation. The wall thickness data is saved in a text file so that it can be read 

by the evaluation system. The wall thickness data file format is shown in appendix C. 

5.6 Summary 

This chapter talked about how to display the wall thickness distribution on the voxel 

model surface. The wall thickness distribution can then be shown on a histogram and the 
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statistics may be performed based on this histogram. The data can also be input into the 

castability assessment system for the castability evaluation. 

Next chapter will show the graphical user interface for the work described in chapter 3, 

chapter 4, and chapter 5. The friendly graphical user interface makes the application 

much easier to use and understand. 
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6. GRAPHICAL USER INTERFACE 

CastView is developed using Visual C++, MFC, and OpenGL. The graphical user 

interface is designed in Visual C++ and MFC. 

6.1 Toolbars 

Toolbars are important components for a perfect Windows application, though they are 

not necessarily a must. 

The buttons in a toolbar generate commands through program handler functions when 

they are clicked. There may be three types of buttons on a toolbar according to their 

different behavior: pushbuttons, check boxes, and radio buttons. The buttons on the 

toolbar containing die configuration and cooling lines functions are all pushbuttons.  

A toolbar may have tool tips when the user moves the mouse over its buttons. The tool tip 

offers a hint of the button’s purpose. The description of the button functions may also be 

displayed on the status bar, which is a control bar with one or more panes. 

Figure 6.1 shows the toolbar containing the die configuration functions. Figure 6.2 shows 

the toolbar with the cooling line functions. 

 

 

Section II-Figure 6.1: Toolbar containing die configuration functions (the first 3 
buttons) 
 



 212

 

 

Section II-Figure 6.2: Toolbar with cooling line functions 

6.2 Die Configuration Property Sheet 

A property sheet that is also called a tab dialog box is generally used to modify the 

attributes of some external object, which is the STL model in this system. A property 

sheet is mainly composed of three parts: the containing dialog box, one or more property 

pages shown one at a time, and a tab at the top of each page that allows the user to select 

that page by clicking it. A property sheet may be very useful for situations where you 

have a number of similar groups of settings or options to change, which may be arranged 

into several property pages.  

In order to exchange data between the property sheet and the external object it is 

modifying when the property sheet is open, the property sheet must be a modeless one so 

that the user does not have to close the property sheet before manipulating the external 

object using other parts of the application. 

Since the die configuration including the definition of die opening direction, die 

orientation, and the die box and the insert box, the user interface is designed using a 

modeless property sheet that contains three pages, each of which is used to manage one 

kind of setting composing the die configuration. The property sheet for the die 

configuration is shown in Figure 6.3. 
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Section II-Figure 6.3: Die configuration property sheet 

6.2.1 Die Opening Direction Property Page 

The die opening direction must be defined first before the definition of the die orientation 

and the die box and the insert box. The user can select any of the three methods to 

proceed to define the die opening direction by left mouse button double click on the STL 

model and may reverse it by right mouse button click. The die opening direction property 

page is shown in Figure 6.3. 
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6.2.2 Die Orientation Property Page 

 

 

Section II-Figure 6.4: Die orientation property page 

After the die opening direction is defined, the z machine axis is decided. In order to 

construct the machine coordinate system, the die orientation is defined afterward as the x 

or machine axis. Then the right hand rule is applied to get the other machine axis. The die 

orientation property page is shown in Figure 6.4. 

6.2.3 Die Box and Insert Box Property Page 

After the machine coordinate system is constructed, it is time to define the die box and 

the insert box. The offset values are input by the user. The die box and the insert box may 
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be previewed so that the undesirable results can be avoided. Figure 6.5 shows the die box 

and insert box property page. 

 

 

Section II-Figure 6.5: Die box and insert box property page 

If the die configuration property sheet is opened after the die box and the insert box have 

been defined, the offset values used to define them are shown in the edit boxes. If the die 

box and the insert box have not been defined when the die configuration property sheet 

shows up, the default values, which are 1/4 of the bounding box dimensions in the 

machine coordinate system, are shown in the edit boxes. The bounding box is the 

minimum box that could contain the casting part inside. The edges of the bounding box 

are parallel to one of the machine axes,  
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If the die construction has not been finished when the user push button “OK”, the 

operation will fail and a warning message will be given. 

6.3 Cooling Line Sketcher 

After the die configuration is defined, the cooling line dialogs may be popped up to draw 

new cooling lines, change cooling line properties, edit or modify existing cooling lines.  

6.3.1 Sketching Cooling Line Dialogs 

6.3.1.1 Sketching a Cooling Line by Inputting Coordinates 

There are three methods to sketch a cooling line. Figure 6.6 illustrates how a cooling line 

is constructed by inputting the coordinates for each of its nodes. A table is used to display 

the coordinates of all of the nodes that form the cooling line. The “Add” button is pushed 

to add a new node that has the coordinates in the edit boxes to the end of the cooling line. 

“Insert” button is used when the new node is to be put right before the highlighted item. 

The highlighted item will be removed if the “Delete” button is pushed down. The 

coordinates of the current item can also be changed to the values in the edit boxes by 

clicking the “Change” button. 
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Section II-Figure 6.6: Sketching a cooling line by inputting node coordinates 

6.3.1.2 Sketching a Cooling Line by Orthogonal Sketch 

Figure 6.7 shows how to sketch a cooling line using the orthogonal method. The 

operations are described on the dialog for each step. The distance that the cooling line 

will go with each key press is displayed and may be changed in the edit box. 
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Section II-Figure 6.7: Sketching a cooling line by orthogonal sketch 
 

6.3.1.3 Sketching a Cooling Line by Free Sketch 

Free sketching a cooling line is shown in Figure 6.8. With a sketch plane selected and 

displayed, the cooling line nodes are then picked one by one by double clicking the left 

mouse button. All the nodes must lie on the sketch plane and fall inside the die box. 
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Section II-Figure 6.8: Sketching a cooling line by free sketch 

A sketch plane used in the free sketching can be constructed by one of the two methods: 

offset from a polygon, and the plane normal plus a point method. If the first method is 

chosen, the input offset dialog shown in Figure 6.9 will then be popped up to urge the 

user to select a polygon on the STL model and input an offset value. The new sketch 

plane may be previewed before it is ok. 

 

Section II-Figure 6.9: Inputting offset value to construct new sketch plane 
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If the new sketch plane is to be established using the plane normal and a point, another 

dialog is shown to direct the user to construct the sketch plane step by step. The dialog is 

as following in Figure 6.10 and Figure 6.11. There are three ways to define the plane 

normal, as is similar to the definition of the die opening direction. Two methods are 

selectable to locate the sketch plane. The location point may be on the STL model or on 

one of the die box surfaces. 

 

Section II-Figure 6.10: Plane normal plus a point to construct new sketch plane: 
step 1 

 

Section II-Figure 6.11: Plane normal plus a point to construct new sketch plane: 
step2 
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6.3.2 Cooling Line Tree 

A cooling line tree dialog will pop up allowing the userto view the cooling lines/sketch 

planes previously constructed. The user can view a specific existing or all the cooling 

lines/sketch planes. When a specific cooling line is selected, the user may modify this 

cooling line or its properties. The cooling line tree dialog is shown in Figure 6.12. 

 

Section II-Figure 6.12: Cooling Line Tree 

6.3.3 Setting Cooling Line Properties 

Cooling line properties are all set in the dialog shown in Figure 6.13. The values are set 

and the units are selected before the heat transfer coefficient can be calculated. Users can 
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set another value to the heat transfer coefficient instead of letting the system calculate it. 

Values can be saved to a file as default settings, which can be loaded whenever needed. 

 

Section II-Figure 6.13: Cooling line properties Dialog 

6.3.4 Modifying Cooling Line Dialogs 

Modification can be done during or after the construction of a cooling line. There are 

three methods to modify a selected cooling line. One method is by editing its node 

coordinates. Another is by orthogonal method, and the other method is graphical editing. 

When a selected cooling line is to be modified by editing its node coordinates, the dialog 

in Figure 6.6 shows up and the user can edit the node coordinates as much as they want. 

If the orthogonal method is chosen to modify the selected cooling line, the same dialog in 

Figure 6.7 shows up and allows the user to choose the operation that they want to do to 

modify that specific cooling line.  
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First, the node or line segment that is to be modified or to be removed is picked by left 

mouse button double clicking on that node or line. Then if it is to be removed, a message 

box is popped up for the user to confirm the operation. If the node or line is about to be 

moved, the function keys are used to move it along the axes of the object coordinate 

system at a certain pace, specified in the edit box. The user may change the pace if they 

want. For visual purposes, the node to be modified or removed is surrounded by a red 

rectangle on screen and the line to be modified or removed is rendered in a color other 

than that of a usual cooling line. 

If the user wants to modify a cooling line by graphical editing, the same dialog in Figure 

6.8 pops up for the modification. A node or line segment can be removed by left mouse 

button double clicking or modified by pressing the left mouse button and dragging it to a 

new position. 

6.4 Summary 

This chapter has provided a friendly graphical user interface for the die configuration and 

the cooling line functions. Audible or visual effects are used to give the user some 

feedback of the successful operation. For example, when the die opening direction is 

selected, a beep sound is made; when a line segment is selected for modification, it is 

rendered in a different color from the usual cooling line color. 

Several examples will be given in next chapter. 
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7. IMPLEMENTATION AND EXAMPLES 

A lot of examples have been used to test the functions of the system. All the tests are 

performed on a Pentium 800MHz PC, which runs Windows 2000 and has 512MB RAM. 

We use the casting part of the bowl as an example of the die configuration and the 

cooling line sketcher. The axes of the coordinate system x, y, z are rendered in red, green 

and blue respectively. 

7.1 Die Configuration 

Figure 7.1 is the STL model after the die opening direction is picked. The die opening 

direction serves as the z machine axis. The z machine axis is shown in blue. The die 

opening direction is shown as an arrow in red. 

Figure 7.2 is the STL model after the die orientation is picked. The die orientation vector 

can be the x or y machine axis depending on the user’s selection. In this example, the die 

orientation vector is the x machine axis. The axes of the machine coordinate system are 

shown in red, green, and blue respectively. The die orientation is shown as an arrow in 

red. 
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Section II-Figure 7.1: Pick die opening direction 
 

 

 

 

 

Section II-Figure 7.2: Pick die orientation 
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Figure 7.3 is the insert box preview and Figure 7.4 is the die box preview. The bounding 

box is also shown to help the user to decide the offset values. From the figures, the edges 

of the insert box and the die box are parallel to one of the axis of the machine coordinate 

system. The insert box is in purple, and the die box is in green. 

 

 

 

 

 

Section II-Figure 7.3: Insert box preview 
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Section II-Figure 7.4: Die box Preview 
 

7.2 Sketching Cooling Line 

There are three methods to sketch a cooling line: input node coordinates, orthogonal 

sketch, and free sketch. 
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7.2.1 Sketching Cooling Line by Inputting Node Coordinates 

Figure 7.5 shows the cooling line drawn by inputting node coordinates. There are four 

nodes on this cooling line.  

 

Section II-Figure 7.5: Sketching cooling line by inputting node coordinates 

7.2.2 Sketching Cooling Line by Orthogonal Sketch 

The entry point is picked by left mouse button double click, as is illustrated in Figure 7.6. 

The entry point may be on an existing cooling line segment if it happens to be so, or may 

lie on one of the die box surfaces. Then the cooling line is driven on until it ends using 

the function keys, as is shown in Figure 7.7. 
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Section II-Figure 7.6: Pick entry point 
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Section II-Figure 7.7: Driving cooling line 

7.2.3 Sketching Cooling Line by Free Sketch 

Since the cooling line nodes lie on sketch planes, the sketch plane is established first. 

Figure 7.8 illustrates a sketch plane that intersects with the STL model, and its 

intersection line loops with the die box and the STL model are also shown in red.  Figure 

7.9 shows a sketch plane that does not intersects with the STL model, and it only has an 

intersection line loop with the die box. In the latter case, we don’t want the user to lose 

the relative position of the sketch plane to the STL model, so it is rendered transparently. 

All sketch planes are rendered in dark green. 
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Section II-Figure 7.8: A sketch plane intersecting with STL model 



 232

 

 

Section II-Figure 7.9: A sketch plane not intersecting with STL model 

After the sketch planes are selected, the cooling line nodes are picked on the sketch 

planes. Figure 7.10 illustrates the cooling line of which the first few nodes are picked on 

the sketch plane shown in Figure 7.9 and the following nodes are to be selected on the 

sketch plane shown in Figure 7.8. Figure 7.11 shows that the cooling line continues to be 

drawn on the sketch plane shown in Figure 7.8.  
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Section II-Figure 7.10: Changing sketch planes while drawing cooling line 

When a cooling line node is picked on a sketch plane, two orthogonal lines, each of 

which is parallel to one of the edges of the sketch plane, are shown to assist the user to 

draw cooling lines parallel to the axes of the machine coordinate system, as is the most 

frequently happening case in die casting cooling lines. 



 234

 

Section II-Figure 7.11: Continue drawing cooling line on new sketch planes 

7.2.4 Modifying an Existing Cooling Line 

A specific cooling line may be modified using one of the three methods: modifying the 

node coordinates, orthogonal editing or graphical editing. The first two methods are used 

in the same way as a new cooling line is drawn. 

When a node or line segment of a cooling line is to be moved by graphical editing, the 

user presses the left mouse button and drags the node or line segment to the new desirable 

position. Figure 7.12 shows a node to be moved on the sketch plane related with it. 
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Section II-Figure 7.12: Move a node on the sketch plane 

7.3 Wall Thickness Mapping Back 

The wall thickness is mapped back onto the Voxel model surface after the thin section 

analysis. Here we use the casting part of the adaptor as an example. The imported STL 

model is shown in Figure 7.13, and the mapping back result is illustrated in Figure 7.14. 

The voxels are classified according to their wall thickness, and the statistical result is 

shown in Figure 7.15. 
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Section II-Figure 7.13: Adaptor – STL model 

 

Section II-Figure 7.14: Wall thickness mapped back to voxel model surface 
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Section II-Figure 7.15: Wall thickness quantitative display 
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8. CONCLUSIONS 

It has been well understood that design and manufacturing must work together in order to 

achieve quality products with a short lead-time and a low cost. The area of Design for 

Manufacturing (DFM) has been subject to intense investigation in recent years. 

Manufacturability evaluation tools have been developed in various domains to identify 

and resolve the design problems that might arise during the manufacturing process while 

still in the design stage. 

CastView software is an easy-to-use design visualization tool that presents die casting-

specific information in 3-D graphical form. This software provides a “quick and dirty” 

analysis of die casting part designs, which is related with thermal and flow problems, 

based only on the part geometry and requires no special experience with computer 

simulation or computer-aided engineering. The analysis is qualitative and generally takes 

less than one hour regardless the geometry complexity. 

The cooling system affects the metal flow and the thermal distribution significantly. This 

work makes the design and the redesign of the cooling system available before the 

analysis is processed. Many functions are designed and implemented in the current 

system, and provide an easy way to define and modify the die configuration and the 

cooling lines. There may be many schemes for the design of the die configuration and the 

cooling system. Each scheme may be saved in a file and serve as a candidate so that the 

optimal one can be chosen after comparing the results of the analyses based on each 

scheme. The Graphical User Interface makes the user’s work a lot simpler. For example, 
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the cooling line segment is rendered in a different color from other segments in order to 

indicate this segment is about to be modified. The Graphical User Interface also provides 

the user a guidance of how to begin and complete a desired operation. 

Since the wall thickness is used to predict the thermal problems and the filling patterns 

during thick and thin analysis, it is also mapped back onto the voxel model surface to 

help the user view the casting part globally. This process can also be applied to die 

surface to predict thermal problems sometimes called steel condition problems. The 

mapping back results may then serve as an input to the castability evaluation system. 
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APPENDIX A 

DIE CONFIGURATION FILE FORMAT 

Created Time: Tue Dec 03 14:14:20 2002  //file created time 

 

Die Opening Direction: 0  1 0     //die opening 

direction (x,y,z) 

X Direction: 0 0 1       //x machine 

axis vector(x,y,z) 

 

Insert Box Offsets: 

40 40 20         

 //insert box offsets (x-,y-,z-)  

40 40 20         

 //insert box offsets (x+,y+,z+) 

 

Die Box Offsets: 

40 40 20         

 //die box offsets (x-,y-,z-) 

40 40 20         

 //die box offsets (x+,y+,z+)  
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Die Configuration Finished. 
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APPENDIX B 

COOLING LINE FILE FORMAT 

/* The number of sketch planes */ 

2  

         

/* Sketch plane index, parameters of plane equation Ax+By+Cz+D=0 */ 

1 0 1 0 -5 

2 0 1 0 -60.4828 

 

/* The number of cooling lines */ 

3 

 

/* File format for each Cooling Line: 

Cooling Line index, creation flag, and the number of nodes for this cooling line. Cooling 

Line properties: fluid medium, line diameter, flow rate, fluid temperature, and heat 

transfer coefficient. Node coordinates (x,y,z) and related sketch plane index if any. 
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Creation flag: 1 means to establish this cooling line by inputting node coordinates; 2 

means to establish this cooling line orthogonally; 3 means to establish this cooling line 

using sketch planes */ 

 

1 1 2       // line index, creation 

flag, number of nodes 

water        //medium flowing through 

the cooling line 

8 mm        //diameter of the cooling line 

0.2 m/s        //flow rate of the cooling 

fluid 

30 C        //temperature of the cooling 

fluid 

1358.23 W/m^2-K     //heat transfer coefficient of the fluid 

-162.287 20 -112.553   //1st node coordinates (x,y,z) 

162.215  20 -112.553   //2nd node coordinates (x,y,z) 

 

2 2 2       // line index, creation 

flag, number of nodes 

oil         //medium flowing 

through the cooling line 
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1 cm        //diameter of the cooling line 

0.2 m/s        //flow rate of the cooling 

fluid 

100 F        //temperature of the cooling 

fluid 

203.034 W/m^2-K     //heat transfer coefficient of the fluid 

1.1126 120  22.7826    //1st node coordinates (x,y,z) 

1.11289 -40  22.7826    //2nd node coordinates (x,y,z) 

 

3 3 4       // line index, creation 

flag, number of nodes 

others        //medium flowing through 

the cooling line 

8 mm        //diameter of the cooling line 

0.3 m/s        //flow rate of the cooling 

fluid 

20 C        //temperature of the cooling 

fluid 

1000 W/m^2-K      //heat transfer coefficient of 

the fluid 



 245

162.215  60.4844 108.509    2 //1st node coordinates and its sketch 

plane index 

6.74853  60.484     108.706 2 //2nd node coordinates and its sketch 

plane index 

6.74853  5         108.706 1 //3rd node coordinates and its sketch plane 

index 

-162.287  5.00273  109.228 1 //4th node coordinates and its sketch plane 

index 
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APPENDIX C 

WALL THICKNESS FILE FORMAT 

Castview Wall Thickness file: bowl_mm_surf_wall.cvsrf  //file name 

Data Created Time: Mon Nov 18 02:19:27 2002    //file create 

time 

 

//wall thickness flag: 1 means the histogram will show distance from surface, 2 means the 

//histogram will show the wall thickness 

Wall Thickness flag: 2      

Voxel Layers: 5       //the maximum 

skeleton value 

Voxel Size: 0.82251      //voxel size 

Wall thickness unit: Millimeters   //wall thickness unit 

Total Number of Voxels: 479044   //total number of voxels 

 

//wall thickness value, number of voxels, and its percentage over total number of voxels 

Wall Thickness  Voxel Numbers  Overall Percentage 

1.645020   10182    2.125483% 

3.290040   218884    45.691836% 
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4.935060   120306    25.113768% 

6.580081   19043    3.975209% 

8.225101   110629    23.093703% 

 

 

 

------------    OVER ------------ 
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