Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization ...

PDF Version Also Available for Download.

Description

The Department of Energy has identified the location and characterization of subsurface contaminants and the characterization of the subsurface as a priority need. Many DOE facilities are in need of subsurface imaging in the vadose and saturated zones. This includes (1) the detection and characterization of metal and concrete structures, (2) the characterization of waste pits (for both contents and integrity) and (3) mapping the complex geological/hydrological framework of the vadose and saturated zones. The DOE has identified ground penetrating radar (GPR) as a method that can non-invasively map transportation pathways and vadose zone heterogeneity. An advanced GPR system and ... continued below

Physical Description

vp.

Creation Information

Powers, Michael H. June 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Department of Energy has identified the location and characterization of subsurface contaminants and the characterization of the subsurface as a priority need. Many DOE facilities are in need of subsurface imaging in the vadose and saturated zones. This includes (1) the detection and characterization of metal and concrete structures, (2) the characterization of waste pits (for both contents and integrity) and (3) mapping the complex geological/hydrological framework of the vadose and saturated zones. The DOE has identified ground penetrating radar (GPR) as a method that can non-invasively map transportation pathways and vadose zone heterogeneity. An advanced GPR system and advanced subsurface modeling, processing, imaging, and inversion techniques can be directly applied to several DOE science needs in more than one focus area and at many sites. Needs for enhanced subsurface imaging have been identified at Hanford, INEEL, SRS, ORNL, LLNL, SNL, LANL, and many other sites. In fact, needs for better subsurface imaging probably exist at all DOE sites. However, GPR performance is often inadequate due to increased attenuation and dispersion when soil conductivities are high. Our objective is to extend the limits of performance of GPR by improvements to both hardware and numerical computation. The key features include (1) greater dynamic range through real time digitizing, receiver gain improvements, and high output pulser, (2) modified, fully characterized antennas with sensors to allow dynamic determination of the changing radiated waveform, (3) modified deconvolution and depth migration algorithms exploiting the new antenna output information, (4) development of automatic full waveform inversion made possible by the known radiated pulse shape.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-86992--2003a
  • Grant Number: AI07-02ER63513
  • DOI: 10.2172/838446 | External Link
  • Office of Scientific & Technical Information Report Number: 838446
  • Archival Resource Key: ark:/67531/metadc781174

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 10, 2016, 6:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Powers, Michael H. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization ..., report, June 1, 2003; Denver, Colorado. (digital.library.unt.edu/ark:/67531/metadc781174/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.