The Beyond the standard model working group: Summary report

PDF Version Also Available for Download.

Description

In this working group we have investigated a number of aspects of searches for new physics beyond the Standard Model (SM) at the running or planned TeV-scale colliders. For the most part, we have considered hadron colliders, as they will define particle physics at the energy frontier for the next ten years at least. The variety of models for Beyond the Standard Model (BSM) physics has grown immensely. It is clear that only future experiments can provide the needed direction to clarify the correct theory. Thus, our focus has been on exploring the extent to which hadron colliders can discover ... continued below

Physical Description

153 pages

Creation Information

al., G. Azuelos et March 18, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this working group we have investigated a number of aspects of searches for new physics beyond the Standard Model (SM) at the running or planned TeV-scale colliders. For the most part, we have considered hadron colliders, as they will define particle physics at the energy frontier for the next ten years at least. The variety of models for Beyond the Standard Model (BSM) physics has grown immensely. It is clear that only future experiments can provide the needed direction to clarify the correct theory. Thus, our focus has been on exploring the extent to which hadron colliders can discover and study BSM physics in various models. We have placed special emphasis on scenarios in which the new signal might be difficult to find or of a very unexpected nature. For example, in the context of supersymmetry (SUSY), we have considered: how to make fully precise predictions for the Higgs bosons as well as the superparticles of the Minimal Supersymmetric Standard Model (MSSM) (parts III and IV); MSSM scenarios in which most or all SUSY particles have rather large masses (parts V and VI); the ability to sort out the many parameters of the MSSM using a variety of signals and study channels (part VII); whether the no-lose theorem for MSSM Higgs discovery can be extended to the next-to-minimal Supersymmetric Standard Model (NMSSM) in which an additional singlet superfield is added to the minimal collection of superfields, potentially providing a natural explanation of the electroweak value of the parameter {micro} (part VIII); sorting out the effects of CP violation using Higgs plus squark associate production (part IX); the impact of lepton flavor violation of various kinds (part X); experimental possibilities for the gravitino and its sgoldstino partner (part XI); what the implications for SUSY would be if the NuTeV signal for di-muon events were interpreted as a sign of R-parity violation (part XII). Our other main focus was on the phenomenological implications of extra dimensions. There, we considered: constraints on Kaluza Klein (KK) excitations of the SM gauge bosons from existing data (part XIII) and the corresponding projected LHC reach (part XIV); techniques for discovering and studying the radion field which is generic in most extra-dimensional scenarios (part XV); the impact of mixing between the radion and the Higgs sector, a fully generic possibility in extra-dimensional models (part XVI); production rates and signatures of universal extra dimensions at hadron colliders (part XVII); black hole production at hadron colliders, which would lead to truly spectacular events (part XVIII). The above contributions represent a tremendous amount of work on the part of the individuals involved and represent the state of the art for many of the currently most important phenomenological research avenues. Of course, much more remains to be done. For example, one should continue to work on assessing the extent to which the discovery reach will be extended if one goes beyond the LHC to the super-high-luminosity LHC (SLHC) or to a very large hadron collider (VLHC) with {radical}s {approx} 40 TeV. Overall, we believe our work shows that the LHC and future hadronic colliders will play a pivotal role in the discovery and study of any kind of new physics beyond the Standard Model. They provide tremendous potential for incredibly exciting new discoveries.

Physical Description

153 pages

Source

  • Workshop on Physics at TeV Colliders, Les Houches (FR), 05/21/2001--06/01/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-01/476
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 822132
  • Archival Resource Key: ark:/67531/metadc781142

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 18, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 4, 2016, 7:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

al., G. Azuelos et. The Beyond the standard model working group: Summary report, article, March 18, 2004; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc781142/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.