A Hybrid Semi-Analytical and Numerical Method for ModelingWellbore Heat Transmission

PDF Version Also Available for Download.

Description

Fluid flow in geothermal production and injection wells can be strongly affected by heat transfer effects with the formations surrounding the wellbore. Various techniques and approximations to model wellbore heat transmission have been presented in the literature. The objective of the present work is to develop a treatment of conductive heat transfer in the formations surrounding a wellbore that is simple, yet provides good accuracy for transient effects at early time. This is accomplished by adapting the well known semi-analytical heat transfer method of Vinsome and Westerveld (1980) to the problem of heat transfer to and from a flowing well. ... continued below

Creation Information

Pruess, Karsten & Zhang, Yingqi January 11, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Fluid flow in geothermal production and injection wells can be strongly affected by heat transfer effects with the formations surrounding the wellbore. Various techniques and approximations to model wellbore heat transmission have been presented in the literature. The objective of the present work is to develop a treatment of conductive heat transfer in the formations surrounding a wellbore that is simple, yet provides good accuracy for transient effects at early time. This is accomplished by adapting the well known semi-analytical heat transfer method of Vinsome and Westerveld (1980) to the problem of heat transfer to and from a flowing well. The Vinsome-Westerveld method treats heat exchange between a reservoir and adjacent cap and base rocks by means of a hybrid numerical-analytical method, in which temperature distributions in the conductive domain are approximated by simple trial functions, whose parameters are obtained concurrently with the numerical solution for the flow domain. This method can give a very accurate representation of conductive heat transfer even for non-monotonic temperature variations over a broad range of time scales. The only enhancement needed for applying the method to wellbore heat transmission is taking account of the cylindrical geometry around a flowing well, as opposed to the linear flow geometry in cap and base rocks. We describe the generalization of trial functions needed for cylindrical geometry, and present our implementation into the TOUGH2 reservoir simulator. The accuracy of the method is evaluated through application to non-isothermal flow through a pipe.

Source

  • Thirteeth Workshop on Geothermal ReservoirEngineering, Stanford, CA, Jan. 31-Feb. 2, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--56824
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 860336
  • Archival Resource Key: ark:/67531/metadc781042

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 11, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 8:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pruess, Karsten & Zhang, Yingqi. A Hybrid Semi-Analytical and Numerical Method for ModelingWellbore Heat Transmission, article, January 11, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc781042/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.