Investigation of Efficiency Improvements During CO2 Injection in Hydraulically and Naturally Fractured Reservoirs Progress Report

PDF Version Also Available for Download.

Description

For many years many efforts have been performed in the laboratory experiments to duplicate the reservoir conditions. In this study, we will investigate the permeability change at different overburden conditions. The reduction in permeability with overburden pressure has been well known. Fatt and Davis (1952) presented the changes in permeability with pressure at range 0 to 15,000 psig and found that overburden pressure caused a reduction in permeability of the consolidated oil-bearing sandstone samples by as much as 50% at 10,000 psig. Wyble (1958) performed similar experiments on three different sandstone samples to determine the changes in conductivity, porosity and … continued below

Physical Description

21 pages

Creation Information

Schechter, David S. April 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

Description

For many years many efforts have been performed in the laboratory experiments to duplicate the reservoir conditions. In this study, we will investigate the permeability change at different overburden conditions. The reduction in permeability with overburden pressure has been well known. Fatt and Davis (1952) presented the changes in permeability with pressure at range 0 to 15,000 psig and found that overburden pressure caused a reduction in permeability of the consolidated oil-bearing sandstone samples by as much as 50% at 10,000 psig. Wyble (1958) performed similar experiments on three different sandstone samples to determine the changes in conductivity, porosity and permeability at pressure range 0 to 5,000 psig. His results were consistent with the observation by Fatt and Davis (1952). During the experiments, different overburden pressures (radial force) were applied only to the cylinder core while the axial direction was kept at constant atmospheric pressure. Gray et al. (1963) enhanced the previous experiments by applying axial force and combining with overburden pressure (radial force) to measure the anisotropy permeability changes at more representative reservoir stress-state condition. They showed that permeability reduction subjected to overburden pressure as a function of the ratio of radial to axial stress and the permeability reduction under non-uniform stress (radial pressure {ne} axial pressure) is less than that under uniform stress. Although extensive work has been established on the effect of overburden pressure and stress-state on matrix permeability but there are some very interesting details of fractured rock behavior under stress that have not been investigated. In this study we will show the effect of fracture aperture and fracture permeability on the fluid flow under different overburden pressure. This study is a precursor to investigating fracture apertures under different stress-state conditions (confining stress, hydrostatic stress and triaxial stress) and imaging fracture aperture distributions using X-ray CT.

Physical Description

21 pages

Notes

OSTI as DE00824374

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Dec. 16, 2024, 5:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Schechter, David S. Investigation of Efficiency Improvements During CO2 Injection in Hydraulically and Naturally Fractured Reservoirs Progress Report, report, April 2002; Texas. (https://digital.library.unt.edu/ark:/67531/metadc781002/: accessed May 15, 2025), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen