Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste

PDF Version Also Available for Download.

Description

Our multifaceted research program is aimed at the fundamental and practical development of hybrid micro-electro-mechanical-systems (MEMS) that integrates several elements of chemical selectivity and sensor function. We are developing MEMS sensors that combine chemimechanical transduction, and surface enhanced Raman spectroscopy (SERS) and radiation detection. One of our goals is to develop highly effective methods of immobilizing a wide variety of molecular and ionic recognition phases onto micromechanical surfaces. We have introduced fundamentally new modes of adsorbate-induced surface stress through nano-structuring of microcantilever surfaces; the responsivity for has increased by over two-orders of magnitude over previously existing technological approaches. Noble metal ... continued below

Physical Description

vp.

Creation Information

Datskos, Panos G. & Sepaniak, Michael J. June 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Our multifaceted research program is aimed at the fundamental and practical development of hybrid micro-electro-mechanical-systems (MEMS) that integrates several elements of chemical selectivity and sensor function. We are developing MEMS sensors that combine chemimechanical transduction, and surface enhanced Raman spectroscopy (SERS) and radiation detection. One of our goals is to develop highly effective methods of immobilizing a wide variety of molecular and ionic recognition phases onto micromechanical surfaces. We have introduced fundamentally new modes of adsorbate-induced surface stress through nano-structuring of microcantilever surfaces; the responsivity for has increased by over two-orders of magnitude over previously existing technological approaches. Noble metal nanostructures similar to those that enhance chemi-mechanical transduction exhibit substantial Raman enhancement factors.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-65340--2004
  • Grant Number: FG07-01ER62718
  • DOI: 10.2172/838740 | External Link
  • Office of Scientific & Technical Information Report Number: 838740
  • Archival Resource Key: ark:/67531/metadc780964

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Nov. 3, 2016, 7:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Datskos, Panos G. & Sepaniak, Michael J. Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste, report, June 1, 2004; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc780964/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.