Our interest is in obtaining a scientifically defensible endpoint for measuring ecological risks to populations exposed to chronic, low-level radiation, and radiation with concomitant exposure to chemicals. To do so, we believe that we must understand the extent to which molecular damage is detrimental at the individual and population levels of biological organization. Ecological risk analyses based on molecular damage, without an understanding of the impacts to higher levels of biological organization, could cause cleanup strategies on DOE sites to be overly conservative and unnecessarily expensive. Our goal is to determine the relevancy of sublethal cellular damage to the performance ...
continued below
Publisher Info:
Office of Scientific and Technical Information, Oak Ridge, TN
Place of Publication:
Oak Ridge, Tennessee
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
Our interest is in obtaining a scientifically defensible endpoint for measuring ecological risks to populations exposed to chronic, low-level radiation, and radiation with concomitant exposure to chemicals. To do so, we believe that we must understand the extent to which molecular damage is detrimental at the individual and population levels of biological organization. Ecological risk analyses based on molecular damage, without an understanding of the impacts to higher levels of biological organization, could cause cleanup strategies on DOE sites to be overly conservative and unnecessarily expensive. Our goal is to determine the relevancy of sublethal cellular damage to the performance of individuals and populations. We think that we can achieve this by using novel biological dosimeters in controlled, manipulative dose/effects experiments, and by coupling changes in metabolic rates and energy allocation patterns to meaningful population response variables (such as age-specific survivorship, reproductive output, age at maturity and longevity).
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Hinton, Thomas G.DETERMINING SIGNIFICANT ENDPOINTS FOR ECOLOGICAL RISK ANALYS ES,
report,
December 31, 2000;
Oak Ridge, Tennessee.
(digital.library.unt.edu/ark:/67531/metadc780935/:
accessed April 22, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.