Sum frequency generation (SFQ) vibrational spectroscopy studies of combustion reactions on platinum single crystal surfaces

PDF Version Also Available for Download.

Description

We have studied the dissociation of CO catalyzed by platinum single crystals. At 40 torr of CO, the Pt(111) crystal dissociates CO at 673 K. Under the same conditions, Pt(100) dissociates CO at 500 K, and Pt(557) dissociates CO at 548 K. Hence, the CO dissociation reaction is a structure sensitive reaction. SFG was used to monitor the CO top site resonance as the platinum crystals were heated to the dissociation temperature when exposed to 40 torr of CO. In all three systems, the CO resonance shifts to lower frequency as the platinum crystal is heated. However, the frequency of ... continued below

Physical Description

5 pages; OS: OS X

Creation Information

Gaughan, Jessica S. January 15, 2004.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 48 times , with 4 in the last month . More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

We have studied the dissociation of CO catalyzed by platinum single crystals. At 40 torr of CO, the Pt(111) crystal dissociates CO at 673 K. Under the same conditions, Pt(100) dissociates CO at 500 K, and Pt(557) dissociates CO at 548 K. Hence, the CO dissociation reaction is a structure sensitive reaction. SFG was used to monitor the CO top site resonance as the platinum crystals were heated to the dissociation temperature when exposed to 40 torr of CO. In all three systems, the CO resonance shifts to lower frequency as the platinum crystal is heated. However, the frequency of the CO resonance at the dissociation frequency is lower on the (100) and (111) crystal faces than on the Pt(557) crystal. We believe that the (111) and (100) crystal faces must undergo roughening to expose step or kink sites in order to facilitate the dissociation reaction. This is supported by UHV studies of CO dissociation catalyzed by platinum crystals. These studies observe dissociation only when step or kink sites are present. Since the Pt(111) surface is very stable, it needs to be heated to 673 K to produce the low coordination number sites needed for CO dissociation. Since the Pt(100) surface easily reconstructs, it is able to form the active sites for CO dissociation at relatively low temperatures. The SFG spectra support our conclusion that the CO molecules are sitting on low coordination number platinum atoms at the dissociation temperature. Since the Pt(557) surface already has step sites, the dissociation reaction can take place without further roughening of the surface. The CO resonance on the (557) crystal face at the dissociation temperature is at a very similar frequency to CO molecules adsorbed on only the step sites of the crystal. Further studies showed that the dissociation reaction takes place on the (557) surface at CO pressures as low as 1 torr. At 1 torr of CO, the carbon deposition rate is 1.0 x 10{sup -2} ML minute{sup -1}. A series of experiments at CO pressures ranging from 5 to 20 torr leads to a 0.8 order dependence of the dissociation reaction on CO pressure.

Physical Description

5 pages; OS: OS X

Notes

OSTI as DE00821456

Source

  • Other Information: TH: Thesis (Ph.D.); Submitted to Univ. of California, Berkeley, CA (US)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: LBNL--54392
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 821456
  • Archival Resource Key: ark:/67531/metadc780892

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • January 15, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Sept. 21, 2017, 6:01 p.m.

Usage Statistics

When was this document last used?

Yesterday: 1
Past 30 days: 4
Total Uses: 48

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gaughan, Jessica S. Sum frequency generation (SFQ) vibrational spectroscopy studies of combustion reactions on platinum single crystal surfaces, thesis or dissertation, January 15, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc780892/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.