Light Duty Truck Aftertreatment - Experience and Challenges

Fabien Redon, Houshun Zhang, Charlie Freese and Nabil Hakim

Detroit Diesel Corporation

Detroit Diesel’s test experience on light duty truck PM aftertreatment technology development will be presented. The Tier-II extremely low emissions standards combined with the light-duty test cycle impose a significant challenge for the development of production-viable emissions technologies.

A robust general path to achieve these emissions targets will be outlined.
Light Duty Emissions
Aftertreatment

Houshon Zhang
Fabien Redon

Presented by: Charles Freese
Detroit Diesel Corporation
Outline

• Light Duty Emissions Challenges
 – Tier 2 Targets
 – Vehicle Inertia
 – Fuel Quality
 – Light Duty Cycle
 » Effects on Regeneration

• Progress Toward Targets

• Future Technical Path
Outline

• Light Duty Emissions Challenges
 – Tier 2 Targets
 – Vehicle Inertia
 – Fuel Quality
 – Light Duty Cycle
 » Effects on Regeneration
• Progress Toward Targets
• Future Technical Path
U.S. Light-Duty Standards
Automotive Emissions (Under 8,500 lb GVW)

New Tier 2 Allows Interim Standards in 2004, which Ultimately Lead to California LEV2 Standard

- California LEV 2
- U.S. Federal LEV 1 (LDT2 Vehicle Weight)
- U.S. Federal Tier 2 Max BIN 10
- U.S. Federal Tier 1 (LDT2 Vehicle Weight)
Outline

• Light Duty Emissions Challenges
 – Tier 2 Targets
 – Vehicle Inertia
 – Fuel Quality
 – Light Duty Cycle
 » Effects on Regeneration
• Progress Toward Targets
• Future Technical Path
Vehicle Inertia Effects

• Vehicle Inertia Dramatically Affects Vehicle Emissions

• ≤ 8,500 lb Held to Same Standards

• Must Demonstrate Technology Scalability
Effect of Vehicle Inertia Weight

NO_x Emissions

Inertia Weight (lb)

NO_x (g/mile)
Personal Transportation Engine Technologies

Scalability

1.5L HEV, 1.5L I-3, & 2.0L I-4 0.5L/cylinder

Other Available Engines:
- 2.5L 4-Cylinder
- 4.2L 6-Cylinder
- 3.0L V6 VECTER 0.5 L/cylinder
- 4.0L V6 DELTA 0.67 L/cylinder

Scale

Technology

0.5L per Cylinder

Technology

Share
Outline

- Light Duty Emissions Challenges
 - Tier 2 Targets
 - Vehicle Inertia
 - Fuel Quality
 - Light Duty Cycle
 » Effects on Regeneration
- Progress Toward Targets
- Future Technical Path
Aftertreatment
CRT Sulfur Sensitivity

![Graph showing the conversion of NO to NO2 at different sulfur concentrations and temperatures. The graph plots NO conversion to NO2 (%) on the y-axis and temperature (°C) on the x-axis. The lines represent different sulfur concentrations: 10 ppm, 50 ppm, 100 ppm, 500 ppm, and 1500 ppm. The graph indicates an optimal temperature range for each sulfur concentration.](Image)
Outline

• Light Duty Emissions Challenges
 – Tier 2 Targets
 – Vehicle Inertia
 – Fuel Quality
 – Light Duty Cycle
 » Effects on Regeneration
• Progress Toward Targets
• Future Technical Path
Exhaust Temperature Distribution
Light-Duty vs. Heavy-Duty

Exhaust Temperature Range (Deg C)

Frequency %

Heavy Duty Cycle
Light Duty Cycle

Particulate Trap Regeneration
Outline

- Light Duty Emissions Challenges
 - Tier 2 Targets
 - Vehicle Inertia
 - Fuel Quality
 - Light Duty Cycle
 » Effects on Regeneration
- Progress Toward Targets
- Future Technical Path
Light-Duty Emissions
4.0L V6 Vehicle Results
Exhaust System
Eliminated Exhaust Muffler

- Replaced Muffler with a Continuously Regenerating Trap (CRT)

PM Aftertreatment Device in Exhaust System

Original Muffler
Detroit Diesel DELTA 4.0L V6
Preliminary PM Aftertreatment Results

- Off the Shelf, Non-Optimized PM Aftertreatment System
- Catalyst 6’ from Engine (Too Far)
- Directional Test Only
- Optimized Systems Currently Under Development

Baseline Air System w/o PM Aftertreatment

Air System Improvements w/o PM Aftertreatment

With PM Aftertreatment

With CRT
Aftertreatment Performance
Cycle Effects

FTP Bag 1 and 2: CRT Inlet Temperature (deg C)
Aftertreatment Performance
Cycle Effects & Catalyst Position

FTP Bag 3: Exhaust Temperature Evolution

- CRT Outlet
- Turbo Outlet
- CRT Inlet

Temperature (Deg C)
Time (sec)
Particulate Aftertreatment Regeneration

EGR Influence

DELTA 4.0L V6 - Particulate Trap Regeneration
Effect of EGR Quantity on Soot Burning
During 20 min Highway Runs
DELTA 4.0L V6 - Particulate Trap Regeneration
Effect of Thermal Inertia
(After a 20 min Highway Run)
Outline

• Light Duty Emissions Challenges
 – Tier 2 Targets
 – Vehicle Inertia
 – Fuel Quality
 – Light Duty Cycle
 » Effects on Regeneration

• Progress Toward Targets

• Future Technical Path
Aftertreatment Development Program
Systems Approach

- Aftertreatment Focus
- Low Light-Duty Exhaust Temperatures Complicate Aftertreatment Operation
- Developing Analytical Tools
Aftertreatment Virtual Lab Technical Path

Three-Level Development Strategy

3D- CFD Base
- Detailed physics & design
- Extremely time consuming
- Technology is not mature yet

1D- CFD Base
- Focus on system integration with
- Overall physical dimensions
- General control strategies
- Practical & fast, but sacrifices detail

0D- Mean Value Base
- Focus on Detailed Control Strategies
- Considers Engine, Vehicle, & Aftertreatment
- Practical & Computationally Fast
- Relies on test data & 1-D results for look-up tables
Integrated System Modeling
Complete Vehicle, Engine, & Aftertreatment System

Power, AF ratio

Pre-Catalyst
NO → NO₂

Injector
Lean-NOx Catalyst

Oxidation Catalyst
Tailpipe

Fuel (mile/gal)
Speed (Mile/h)
NOₓ (g/mile)

NOₓ, PM
HC, CO, O₂

O₂
NO
NO₂
PM
HC
CO

……..
Conclusions

- Light-Duty PM Aftertreatment Remains a Challenging Goal
- Progress is Encouraging
- Regulations are Problematic with Respect to Vehicle Weight
- Must Address Fuel Quality Issues
- Unique Light-Duty Cycle Parameters Must Be Addressed, to Achieve Reliable Regeneration
- Analytical Tools Required to Optimize Complete System