A Combined Experimental and Computational Approach for the Design of Mold Topography that Leads to Desired Ingot Surface and Microstructure in Aluminum Casting.

PDF Version Also Available for Download.

Description

A stabilized equal-order velocity-pressure finite element algorithm is presented for the analysis of flow in porous media and in the solidification of binary alloys. The adopted governing macroscopic conservation equations of momentum, energy and species transport are derived from their microscopic counterparts using the volume-averaging method. The analysis is performed in a single domain with a fixed numerical grid. The fluid flow scheme developed includes SUPG (streamline-upwind/Petrov-Galerkin), PSPG (pressure stabilizing/Petrov-Galerkin) and DSPG (Darcy stabilizing/Petrov-Galerkin) stabilization terms in a variable porosity medium. For the energy and species equations a classical SUPG-based finite element method is employed. The developed algorithms were tested ... continued below

Physical Description

1103-1138

Creation Information

Dr. Zabaras, N. & Samanta, D. May 27, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A stabilized equal-order velocity-pressure finite element algorithm is presented for the analysis of flow in porous media and in the solidification of binary alloys. The adopted governing macroscopic conservation equations of momentum, energy and species transport are derived from their microscopic counterparts using the volume-averaging method. The analysis is performed in a single domain with a fixed numerical grid. The fluid flow scheme developed includes SUPG (streamline-upwind/Petrov-Galerkin), PSPG (pressure stabilizing/Petrov-Galerkin) and DSPG (Darcy stabilizing/Petrov-Galerkin) stabilization terms in a variable porosity medium. For the energy and species equations a classical SUPG-based finite element method is employed. The developed algorithms were tested extensively with bilinear elements and were shown to perform stably and with nearly quadratic convergence in high Rayleigh number flows in varying porosity media. Examples are shown in natural and double diffusive convection in porous media and in the directional solidification of a binary-alloy.

Physical Description

1103-1138

Source

  • Journal Name: International Journal for Numerical Methods in Engineering; Journal Volume: 60; Journal Issue: 6; Conference: "A stabilized finite element method for flow in porous media and binary alloy solidification systems", Proceedings of the Seventh U.S. National Congress on Computational Mechanics (edts. Thomas Bickel et al.), presented at the Symposium on 'Stabilized and Multilength scale methods', Seventh U.S. National Congress in Computational Mechanics, Albuquerque, New Mexico, July 27--31, 2003.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ID/14396
  • Grant Number: FC36-02ID14396
  • DOI: 10.1002/nme.998 | External Link
  • Office of Scientific & Technical Information Report Number: 850515
  • Archival Resource Key: ark:/67531/metadc780653

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 27, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 6, 2017, 2:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Dr. Zabaras, N. & Samanta, D. A Combined Experimental and Computational Approach for the Design of Mold Topography that Leads to Desired Ingot Surface and Microstructure in Aluminum Casting., article, May 27, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc780653/: accessed September 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.