CONFORMATIONAL PROPERTIES AND ENTROPIC PARTITIONING OF TOPOLOGICALLY COMPLEX POLYMERS UNDER CONFINEMENT - Final Report

PDF Version Also Available for Download.

Description

The effect of molecular topology (e.g., branch and loop structures) on the solution properties of polymers is subtle and not well characterized. Because the conformational entropy of a polymer depends on its topology, many properties are affected by it such as its size and shape, mobility, bulk-to-pore partitioning, adsorption strength on surfaces, and depletion-induced forces on colloidal surfaces. We have systematically studied the effect of molecular topology on the structure and entropic partitioning of linear, branched, hyper-branched, cyclic, and hyper-cyclic polymers in a bulk solution and in pores. Ours is the first simulation study aimed at characterizing the conformational properties ... continued below

Creation Information

Escobedo, Fernando A. March 24, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The effect of molecular topology (e.g., branch and loop structures) on the solution properties of polymers is subtle and not well characterized. Because the conformational entropy of a polymer depends on its topology, many properties are affected by it such as its size and shape, mobility, bulk-to-pore partitioning, adsorption strength on surfaces, and depletion-induced forces on colloidal surfaces. We have systematically studied the effect of molecular topology on the structure and entropic partitioning of linear, branched, hyper-branched, cyclic, and hyper-cyclic polymers in a bulk solution and in pores. Ours is the first simulation study aimed at characterizing the conformational properties of hyper-cyclic molecules. Key findings: Our results show how differences in molecular architecture can be used to partition polymers in a porous media e.g., a highly branched polymer tends to be depleted in narrow pores (smaller than the coil size) relative to a less branched chain of equal molecular weight, but this trend is reversed in wide pores. It was also found that intra-molecular crosslinking (associated with cyclic structures) is an effective way to tune the conformational entropy of a polymer; the more crosslinks a molecule has, the smaller its conformational entropy, and the easier it is to adsorb it onto attractive pore walls. Intra-crosslinked chains are thus more effective steric stabilizer of colloid particles than linear chains (which are better depleting agents). Simulations were also used to investigate the mechanism of entropic trapping for model linear and branched DNA molecules as they go from a deep channel to a shallow channel driven by an electric field. In such a system, a molecule whose radius of gyration is larger than the gap of the shallow channel tends to get temporarily trapped at its entrance. Our results show that at moderate and strong fields, longer chains escape faster than shorter ones because, in the absence of significant differences in the free energy barrier for escape, larger chains access a larger entrance area to the narrow channel; these results are in agreement with reported experimental observations.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/15291-2
  • Grant Number: FG02-02ER15291
  • DOI: 10.2172/837989 | External Link
  • Office of Scientific & Technical Information Report Number: 837989
  • Archival Resource Key: ark:/67531/metadc780600

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 24, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 3, 2016, 8:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Escobedo, Fernando A. CONFORMATIONAL PROPERTIES AND ENTROPIC PARTITIONING OF TOPOLOGICALLY COMPLEX POLYMERS UNDER CONFINEMENT - Final Report, report, March 24, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc780600/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.