MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

PDF Version Also Available for Download.

Description

MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In ... continued below

Physical Description

4.9 MB pages

Creation Information

Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D. et al. March 15, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and toroidal beta. A proper accounting of energetic ion loss is therefore important for accurate analysis of power balance and transport in plasmas exhibiting MHD-induced energetic ion loss.

Physical Description

4.9 MB pages

Notes

INIS; OSTI as DE00827686

Source

  • Other Information: PBD: 15 Mar 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3931Rev
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/827686 | External Link
  • Office of Scientific & Technical Information Report Number: 827686
  • Archival Resource Key: ark:/67531/metadc780588

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 15, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • June 10, 2016, 6:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D. et al. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX), report, March 15, 2004; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc780588/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.