Effects of processing conditions and ambient environment on the microstructure and fracture strength of copper/niobium/copper interlayer joints for alumina

PDF Version Also Available for Download.

Description

Partial transient liquid phase (PTLP) bonding is a technique which can be used to join ceramics with metals and is used to form niobium-based joints for alumina. The principal advantage to PTLP bonding is that it enables refractory joints to be fabricated at temperatures below those typically required by solid state diffusion bonding. A thorough review of the important parameters (chemical compatibility, thermal expansion match, sufficient wettability of the liquid phase on the solid phases) in choosing a joining material for ceramics by the PTLP method is provided. As in conventional PTLP joining, the current study uses thin (=3 (mu)m) ... continued below

Creation Information

Marks, Robert Alan December 15, 1999.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 36 times . More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Partial transient liquid phase (PTLP) bonding is a technique which can be used to join ceramics with metals and is used to form niobium-based joints for alumina. The principal advantage to PTLP bonding is that it enables refractory joints to be fabricated at temperatures below those typically required by solid state diffusion bonding. A thorough review of the important parameters (chemical compatibility, thermal expansion match, sufficient wettability of the liquid phase on the solid phases) in choosing a joining material for ceramics by the PTLP method is provided. As in conventional PTLP joining, the current study uses thin (=3 (mu)m) copper layers sandwiched between the alumina (bulk) and niobium (127 (mu)m). However, unlike the case of copper/nickel/copper obium is limited. Consequently, the copper is not entirely dissolved in the process, resulting in a two phase (copper-rich and niobium-rich phases) microstructure. Different processing conditions (temperature and applied load) result in different morphologies of the copper-rich and niobium-rich phases at the interface. These different microstructures exhibit distinct strength characteristics. Extended annealing of as-processed joints can influence the strengths differently depending on the ambient partial oxygen pressure at the annealing temperature. The focus of this work is to correlate processing conditions, microstructure, and resulting joint strength. Under optimum processing conditions (1400 degrees C, 2.2 MPa), joints with strengths in excess of 200 MPa at 1200 degrees C are fabricated.

Source

  • Other Information: master's thesis, M.S., University of California at Berkeley, Berkeley, California

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: LBNL--47199
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 843055
  • Archival Resource Key: ark:/67531/metadc780402

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • December 15, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 4, 2016, 12:48 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 36

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Marks, Robert Alan. Effects of processing conditions and ambient environment on the microstructure and fracture strength of copper/niobium/copper interlayer joints for alumina, thesis or dissertation, December 15, 1999; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc780402/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.