Joint Cross Well and Single Well Seismic Studies at Lost Hills, California

PDF Version Also Available for Download.

Description

A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO{sub 2} was ... continued below

Physical Description

39 pages

Creation Information

Gritto, Roland; Daley, Thomas M. & Myer, Larry R. June 25, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO{sub 2} was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data. The cross well experiment did not detect the presence of the hydrofracture but appeared to be sensitive to overall changes in the reservoir and possibly the presence of a fault. In contrast, the single well reflection data revealed an arrival that could indicate the presence of the hydrofracture between the source and receiver wells, while it did not detect the presence of the fault, possibly due to out of plane reflections.

Physical Description

39 pages

Notes

OSTI as DE00836373

Source

  • Journal Name: Geophysical Prospecting; Journal Volume: 52; Other Information: Submitted to Geophysical Prospecting: Volume 52; Journal Publication Date: 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--50651
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 836373
  • Archival Resource Key: ark:/67531/metadc780276

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 25, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 4, 2016, 3:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gritto, Roland; Daley, Thomas M. & Myer, Larry R. Joint Cross Well and Single Well Seismic Studies at Lost Hills, California, article, June 25, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc780276/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.